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This comprehensive review delved into the economic and environmental benefits of Digital Agricultural Tech-
nologies (DATs) in crop production, synthesising data from 136 peer-reviewed papers and 28 documents with
empirical data from relevant EU projects. This analysis highlighted the substantial contribution of DATs across
five key categories: Recording and Mapping Technologies (RMT), Guidance and Controlled Traffic Farming (CTF)
Technologies, Variable Rate Technologies (VRT), Robotic Systems or Smart Machines (RSSM), and Farm Man-
agement Information Systems (FMIS). Specifically, it provided an overview of the various benefits that these
technologies can deliver with the most significant ones revealing reductions of up to 80 % in fertiliser usage with
RMT and CTF applications, while VRT demonstrated a 60 % decrease in fertiliser usage and up to 80 % reduction
in pesticide use. VRT also showed an increase in yield by 62 %. RSSM was able to reduce labour by 97 % and
diesel consumption by 50 %. FMIS improved yield by 10 % to 15 %, facilitating simultaneous reductions in
labour and input costs, illustrating the critical role of integrated digital solutions in enhancing agricultural ef-
ficiency and sustainability. From an environmental point of view, VRT has emerged as a major factor in envi-
ronmental sustainability, demonstrating water savings of 20 % to 50 % in vineyards and pear orchards and a
significant reduction in greenhouse gas emissions. These findings highlighted the significant benefits of DATs on
enhancing productivity and promoting environmental sustainability. They provided a compelling case for further
investment and research in DATs through quantifiable benefits in crop production.

Introduction

Agriculture plays a pivotal role in the global food production and
supply chain, and is constantly adapting to meet the recurring chal-
lenges it faces. The adoption of Digital Agricultural Technologies (DATS)
has emerged as a prominent aspect of this transformative process, of-
fering a forward-thinking perspective within the agricultural domain
[1]. DATs broadly encompass a suite of technologies including precision
agriculture, remote sensing, and data analytics. They differ from other
technologies by providing an integrated approach that combines various
digital tools and platforms to revolutionise traditional farming practices,
whereas smart farming often refers to the application of IoT and con-
nectivity solutions, and precision agriculture specifically focuses on the
precise management of farm inputs. Together, these advancements
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facilitate informed decision-making and optimised resource use [2,3].
Digital agriculture encompasses a broad spectrum of technologies,
including communication, information, and spatial analysis tools. These
technologies enable farmers to efficiently plan, monitor, and manage
both the operational and strategic aspects of their production systems.
Beyond established technologies like field sensors [4-6], orbital and
UAV-embedded remote sensors [7-9], global positioning systems,
telemetry, and automation [10], digital agriculture is also characterised
by the integration of the Internet and connectivity in crops [11,12],
cloud computing, big data, blockchain, and cryptography [13-15], as
well as deep learning [16-18], the Internet of Things (IoT) [19], mobile
applications, and digital platforms [20,21], and artificial intelligence
[22]. These advancements not only support critical pre- and
post-production decisions but also promote greater sustainability within

Received 2 March 2024; Received in revised form 16 March 2024; Accepted 17 March 2024

Available online 21 March 2024

2772-3755/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).


mailto:gpapadopoulos@aua.gr
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2024.100441
https://doi.org/10.1016/j.atech.2024.100441
https://doi.org/10.1016/j.atech.2024.100441
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2024.100441&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

G. Papadopoulos et al.

production systems [23,24], offering access to differentiated markets
that benefit short food supply chains.

The integration of DATs is critically aligned with global sustain-
ability and food security goals, particularly under the European Green
Deal and its "Farm to Fork Strategy’. These initiatives aim for a radical
transformation of the food system towards sustainability, setting ambi-
tious targets for the reduction of chemical pesticides and fertilisers, and
the expansion of organic farming by 2030 [25]. DATs, encompassing
innovations such as precision agriculture, remote sensing, and data
analytics, are at the forefront of this transformation, offering pathways
to harmonise economic profitability with environmental stewardship.
These technologies enable precision resource application, efficient crop
monitoring, and data-driven management, presenting significant ad-
vantages in optimising agricultural productivity and reducing ecological
footprints [2,23,26,27].

Multiple studies have analysed the adoption trends [28-30], the
potential in improving the quality of life for rural populations [31], and
the overall resources efficiency of the agri-food sector [32,33]. Re-
searchers have extensively studied the holistic effect of DATs in the form
of systematic process-based analyses [34,35], with the environmental
footprint of the sector and the potential of DATs in reducing it being at
the forefront of numerous studies [36,37].

The evidence supporting the transformative impact of DATs in
agriculture is compelling, highlighting their role in enhancing yields,
conserving resources, and mitigating environmental impacts. Such
outcomes are vital for tackling the challenges of feeding a growing
population while preserving natural resources and ecosystems. How-
ever, harnessing the full potential of DATs necessitates a comprehensive
analysis of their benefits, catering to the informational needs of various
stakeholders including policymakers, farmers, and the agricultural
industry.

Limited research has been done in combining the environmental and
economic parameters associated with the adoption of DATs across the
entire agricultural sector, with most existing studies either focusing on a
single production system [38] or a single DAT applied in different
agricultural cases [39]. This paper aims to provide a comprehensive
review covering both the economic and environmental benefits of DATs
in a single manuscript, to facilitate decision-making processes, guiding
the adoption and implementation of these technologies in line with the
sustainability goals of the European Green Deal and the 'Farm to Fork
Strategy’.

The EU-funded QuantiFarm project [40], which is dedicated to
evaluating the impact of digital agricultural solutions, actively promotes
the integration of DATSs to increase sustainability and competitiveness.
As part of this project, an integrative literature review was conducted to
gain a comprehensive understanding of the existing percentage and
numerical benefits associated with the economic and environmental
aspects of DATs in crop production. Consequently, the primary aim of
this paper was to provide a thorough understanding of the economic and
environmental impacts of DATs in crop production.

Methodology

The approach followed was grounded on an integrative review of the
existing literature, as described by [41]. Integrative reviews offer new
perspectives, both theoretical and conceptual, through the synthesis
and/or critique of existing research [42]. By using this approach, the
outcomes contribute to research by providing a comprehensive
perspective on the topic, while also systematically organising the
existing knowledge base in a meaningful way.

To guide and clarify the integrative process, the general principles
proposed by Tranfield et al. [43] are followed, which include (1)
framing the objective, (2) executing the process, and (3) presenting the
results [42].
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Framing the objective

The overall aim of this review was to provide numerical evidence of
the economic and environmental benefits of adopting DATs. By quan-
tifying the benefits associated with each DAT, the aim is to encourage
adoption of these technologies amongst farmers, improve their under-
standing of the benefits and consequently increase their willingness to
adopt such innovations in crop production. Consequently, the paper’s
primary objective was formulated by revisiting the core research
questions:

RQ1: What are the economic benefits of integrating DATSs into crop
production?

RQ2: What environmental benefits arise from the adoption of DATs
in crop production?

Categorisation of DATs for crop farming systems

To assess the predefined research questions and to ensure a well-
structured search, searches were conducted using specific categories.
The categorisation of the DATs of this paper was based on Van Evert
et al. [44], which divided Precision Agricultural Technologies into 3
categories, Recording, Guidance and Reacting. For the purpose of this
study, these categories have been further expanded to include the wider
spectrum of DATs into the following five categories:

Recording and Mapping Technologies (RMT) : Characterised by
systems to monitor and map what exists in the crop environment (soil,
crop, micro-climate), using yield and soil mapping, Real-Time Location
Systems (RTLS) and monitoring mechanisms, these technologies create a
bridge between real-time field data and actionable farming strategies
[45]. By tracing diverse field metrics, they facilitate the development of
detailed field blueprints, thereby guiding agricultural operations in
efficient, targeted, and environmentally-friendly directions.

Guidance / Controlled Traffic Farming (CTF) Technologies: These
technologies stand as a testament to innovations addressing the adverse
impact of random vehicle movement across fields [46]. By localising all
vehicular movement to predetermined lanes, CTF combines productiv-
ity, sustainability, and profitability, ensuring soil preservation and a
favourable environment for crop growth [47].

Variable Rate Technologies (VRT): VRT permits farmers to manage
resources with precision. It paves the way for the customised distribu-
tion of fertilisers, insecticides, and irrigation, aligning with individual
crop needs. This technology has the potential to mitigate the environ-
mental footprint of farming practices while also bolstering resource
management, crop yield, and profitability [48].

Robotic Systems or Smart Machines (RSSM): With a combination of
Artificial Intelligence (AI), advanced Information and Communications
Technology (ICT), Machine-to-Machine (M2M) communication, RSSM
mark the digital transformation of agriculture [49]. From drones to
machine learning algorithms and robotic systems and vehicles, they
represent the union of technology and agriculture, guiding the devel-
opment of current and future agricultural paradigms.

Farm Management Information Systems (FMIS): Evolving from
basic record-keeping systems, today’s FMIS platforms and their resulting
products, including Decision Support Systems (DSS) and Quality Man-
agement Systems (QMS), have evolved into sophisticated holistic plat-
forms. Modern agricultural FMIS allow for automated data processing,
by syncing data streams from numerous internet of things (IoT) com-
ponents (such as sensing devices and cloud services), enabling data-
oriented decisions and efficient resource management [50].

Fig. 1 illustrates the categories of DATs applied in the context of crop
farming, which are derived from the pre-existing Precision Agriculture
Techniques.

Execution of the literature review

The execution step of the literature search strategy was developed
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Fig. 1. ‘Categories of DATs for Crop Farming’.

performing three actions: (a) identification, (b) screening, and (c) se-
lection. The literature search strategy is represented in Fig. 2.

Identification of studies via databases

Search Strategy

The search for relevant literature was undertaken through Scopus
and Web of Science, electronic databases known for their comprehen-
sive coverage of scientific and academic publications [42,51,52]. The
search strategy encompassed a range of keywords related to DATSs, and
the economic and environmental aspects of these technologies. Keyword
combinations were structured to target specific DAT categories and their
associated economic and environmental benefits.

General Keywords: “agriculture”, “farming”, “crop production”

DATs Categories Keywords: "Farm Management Information Sys-
tem", "FMIS", "Decision Support System", "DSS", "Guidance”, "Controlled
Traffic Farming", "CTF", "Variable Rate Technologies", "VRT", "Recording
Technologies", "Mapping Technologies", "Robotic Systems", "Smart
Machines".

Economic Benefits Keywords: “yield increase”, “fertiliser saving”,
“pesticide saving”, “herbicide saving”, “labour saving”, “fuel saving”,
“efficiency improvement =, “productivity enhancement”, “cost
reduction”.

Environmental Benefits Keywords: “greenhouse gas emissions”,

“nitrous oxide”, “N20”, “methane emissions”, “CH4”, “carbon foot-
print”, “groundwater quality”, “water quality”, “aquatic ecosystem”,
“soil erosion”, “soil emissions”, “water runoff’, ‘“environmental
sustainability”.

The conducted literature search resulted in a significant number of
potential sources. In order to guarantee the incorporation of the most
relevant and updated content, literature selection criteria and a multi-
stage screening process was implemented.

Literature Selection Criteria

The formulation of the selection criteria was aimed at ensuring the
inclusion of research that is relevant and rigorous. The following criteria
were applied throughout the literature search:

Relevance: The inclusion of articles depended on whether they
addressed DATs within the context of crop systems, with a focus on their
economic and environmental implications.

Publication Date: A preference was given to literature published
within the last decade (2013 to 2023) to ensure the incorporation of the
most current information.

Language: Inclusion of articles primarily in English, with consider-
ation of articles in other languages if deemed highly relevant and if
English translations were available.

Multi-stage screening

At this stage, a review of titles and abstracts of retrieved articles was
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Fig. 2. ‘Flow chart of the literature search strategy’.
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conducted to evaluate their alignment with the research objectives and
inclusion criteria. Subsequently, a comprehensive examination of the
full texts of the selected articles was carried out. Studies that did not
provide substantial information regarding the economic and environ-
mental aspects of DATs in crop systems, particularly those lacking in-
formation on numerical and percentage-based benefits, were excluded.
This decision was made in line with the primary aim of the review,
which was to record scientific data for economic and environmental
benefits as part of the QuantiFarm project to assist farmers in optimising
their economic returns and environmental impact.

Identification of EU project documentations via CORDIS

Search Strategy

The search for relevant EU projects was undertaken through COR-
DIS, the European Commission’s central repository for outcomes
derived from projects financed by the EU’s framework programs. The
following keywords were used to gather the projects related to the
general context of our research.

Keywords: “smart agriculture”, “precision farming”, “precision
agriculture”, “smart farming”, “digital agriculture”, “digital farming”.

In order to manage the large amount of results obtained from COR-
DIS, a thorough selection process was carried out.

Selection Criteria

The use of specific keywords allowed for the retrieval of relevant
materials, resulting in a significant amount of projects and their docu-
mentation. All relevant files from CORDIS were downloaded for exam-
ination, with a specific focus on extracting quantitative insights into the
efficacy of DATs in crop production within the EU context. The initial
phase of the selection involved a thorough assessment to eliminate any
documents that did not directly contribute to the objectives of our
research.

Multi-stage screening

After an initial selection process based on predefined criteria in
Section 2.3.1, a multi-stage screening approach was used to further
refine the dataset and isolate project documentation that specifically
addressed the quantitative benefits of DATSs in crop production. A deeper
analysis was conducted to extract documents containing specific refer-
ences to percentages and numerical benefits associated with the
implementation of DATs in crop production. This involved reviewing
project descriptions, reports, and findings to identify key metrics and
data points that illustrate the impact of DATs on crop production.

Presentation of the results

The presentation of the results is structured to offer a comprehensive
overview of the economic and environmental impacts of DATs in crop
production. Given the diverse nature of DATs and their varied applica-
tions in agriculture, the findings are organised into specific categories
corresponding to the technology types identified in the methodology:
RMT, CTF technologies, VRT, RSSM, and FMIS.

For each category, a dual approach in presenting the results has been
adopted:

Quantitative Summary Tables: The number of peer-reviewed pa-
pers alongside the number of documents with empirical data from
relevant EU projects are synthesised into summary tables. These tables
provide a clear, quantified snapshot of the number of papers and doc-
uments associated with each DAT category, as well as specific benefits
including yield increase, fertiliser savings, pesticide savings, water
savings, labour/fuel/cost savings, and environmental benefits
(Tables 1-6).

Narrative Synthesis: Complementing the quantitative tables, a
narrative synthesis followed to thoroughly examine these findings,
presenting a coherent narrative that connects the various pieces of data.
This narrative comprehensively examined all notable findings for each
DAT category and each specific benefit derived from the literature and
projects, presenting a comprehensive perspective on the advantages
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Table 1
Number of References related to DAT Categories.

Number of relevant
documents with empirical

Number of
relevant Peer-
reviewed papers

DAT Categories

data from relevant EU

projects

Recording and Mapping 27 7
technologies (RMT)

Guidance and Controlled 20 2
Traffic Farming (CTF)
technologies

Reacting or Variable Rate 52 3
Technologies (VRT)

Robotic Systems or Smart 23 3
Machines (inc. Artificial
Intelligence (AI))

Farm Management 14 13
Information Systems
(FMIS)

Total Number: 136 28

linked to DATs. It explained the mechanisms through which DATs
deliver their advantages and the crop types that the DATs were
implemented.

Results

From the screening process, a total of 160 references were selected,
comprising 132 peer-reviewed papers and 28 documents with empirical
data from relevant EU projects. These selections were based on their
specific contributions to understanding the economic and environ-
mental impacts of DATs. Table 1 below categorises these references
according to their relevance to a DAT category and their provision of
data on specific benefits. It is important to note that the total number of
references included all sources that provided information relevant to
one or more DAT categories. Some documents examine more than one
DATs category, highlighting the interconnection and multifaceted ben-
efits of DATSs in agriculture.

Analysing the table, it is evident that the information provided by
scientific articles (136) are more than double that of the European
projects (28). Delving into more detail, it is apparent that certain tech-
nologies are more extensively studied and analysed than others. For
instance, the VRT category provided 48 peer-reviewed articles, ranking
first among all categories. From this result, it can be asserted that this
category is of fundamental importance in all those agricultural systems
whose primary objective is to minimise the misuse of inputs, both for
economic reasons and environmental concerns. For this reason most
articles in this category referred to the variable rate application of
agricultural inputs.

Continuing with the analysis of peer-reviewed articles that garnered
significant interest, the '/RMT’ category ranked second with 27 articles,
followed by the "RSSM’ category in third place with 23 articles. With
regard to the results obtained by RMT, this was undoubtedly attributed
to the strong presence in today’s market of high-performance GPS de-
vices at reasonable costs. This DAT category encompasses several
technologies widely adopted in Precision Agriculture and is essential for
the proper management of all phases of agricultural management and
production. Concerning robotic systems, the significant number of ar-
ticles was probably due to the growing popularity of these technologies,
thanks to the substantial investments currently being made in a sector
that is growing not only in agriculture. Finally, the categories 'CTF’ and
"FMIS’ concluded the ranking with 20 and 14 peer-reviewed articles,
respectively. These categories, although used in agriculture for their
effectiveness, may be considered less crucial than other technologies
analysed, potentially playing a less fundamental role in scientific
research.

Regarding the ranking of data obtained from European projects (28),
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the first position was occupied by data derived from projects related to
FMIS technologies. In this case, 13 specific valid data points for this
technology were found. This situation demonstrated that the interest in
the development of information systems is widely spread and finds space
in the agricultural field as well. The second category with the highest
number of data is "RMT," which presented 7 European projects. The
various technologies falling within this DAT were studied with growing
interest. The reason is attributed to the fact that a correct management
support system depends on accurate recording of georeferenced data.
Finally, the last three categories, "VRT," "RSSM," and "CTF Technolo-
gies," produced 3, 3, and 2 data obtained from European projects,
respectively.

Recording and mapping technologies (RMT) (inc. monitoring and mapping
systems, real-time location systems (RTLS))

Table 2 below provides a detailed and quantified overview of the
peer-reviewed papers and documents with empirical data from relevant
EU projects associated with the RMT DAT category, detailing the specific
benefits observed. These benefits include yield increase, fertiliser sav-
ings, pesticide savings, water savings, and savings in labour, fuel, and
overall costs, as well as environmental benefits.

Yield Increase: RMT have been instrumental in driving yield in-
creases across various agricultural sectors by enabling more informed
and precise farm management decisions. Studies such as that by Paulius
et al. [53] have shown yield increases in organic winter wheat grown
under low soil performance conditions, with gains ranging from 9.7 % to
13.34 %. Keller et al. [54] observed an 8 % to 12 % yield boost in winter
wheat from site-specific weed control, illustrating the potential of tar-
geted agricultural practices.

Yield improvements were also reported by projects like the Added-
Value Weeding Data use case of the IOF2020 project, confirming these
findings. Through high-resolution camera data processing, this project
achieved a 5 % increase in lettuce yield, optimising harvest timings and
selective harvesting in organic vegetable farming (Added Value Weed-
ing Data- [55]). Similarly, the Precision Crop Management project,
utilising IoT sensors and agronomic models, mirrored these results with
a 5 % increase in wheat yield and quality (Precision Crop Management—
[56]). This is in line with the results reported by Munnaf et al. [57],
where maize grain yield increases led to a gross margin increase of up to
$92.67 per hectare.

The Within-Field Management Zoning Baltics initiative, part of the
I0F2020 project, utilised hyperspectral imaging, IoT technologies, and
Al-driven analytics to enhance crop health in potatoes and wheat. The
project achieved substantial yield increases, ranging from 52.5 % to 62.6
% for potatoes and 7.5 % to 8.6 % for wheat, reinforcing the findings of

Table 2
Quantitative Benefits of RMT DAT Category from Peer-Reviewed Papers and EU
Projects.

Recording and Mapping technologies (RMT)

Peer-reviewed Documents with

papers empirical data from
relevant EU project

Total Number related to RTLS 27 7
Economic Benefits N° % Range N° % Range
Yield Increase 6 8-40 % 3 5-62.6 %
Fertiliser savings 8 1.6-82 % 3 5-70 %
Pesticide savings 7 14-65 % 2 15-30 %
Water savings 2 16-35 % 1 10 %
Labour/Fuel/Cost savings 2 2
Labour savings - 5%
Cost savings 34-46 % -
Environmental Benefits 2 2
Global Warming Potential reduction 8.6-17 % -
CO2 emissions reductions - 5-20 %
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Astanakulov et al. [58] who reported significant wheat yield increases
from 4.46 t/ha to 6.24 t/ha using GPS-equipped combines (Within Field
Management Zoning Baltics— [59]). Further evidence from Squeri et al.
[60] and Haghverdi et al. [61] in viticulture and irrigation management,
respectively, with yield increases up to 40 % and 32 %, solidifies the role
of RMT in enhancing agricultural productivity.

Fertiliser Savings: Advancements in RMT have substantially
enhanced fertiliser efficiency. Basso et al. [62] found a 12 % reduction in
nitrogen fertiliser use in wheat through spatially variable nitrogen fer-
tilisation in Mediterranean environments. Argento et al. [63] reported a
reduction in nitrogen leaching, greenhouse gas (GHG) emissions, and
improved nitrogen use efficiency (NUE) by approximately 10 % through
site-specific nitrogen management in winter wheat, facilitated by
remote sensing and soil data, with fertiliser application reduced by 5-40
%.

Anddjar et al. [64] demonstrated an up to 80 % reduction in fertiliser
dosage for vineyard crops using aerial imagery and on-ground detection,
compared to conventional applications. In greenhouse crops, Vakilian
and Massah [65] achieved an 18 % decrease in nitrogen fertiliser con-
sumption with a farmer-assistant robot.

Medel-Jimenez et al. [35] who achieved input savings of 14 % using
prescription maps and 23.9 % using sensors. Colaco and Bramley [66],
Colaco and Molin [67] and Guerrero and Mouazen [68] also provide
literature evidence of nitrogen application reduction, ranging from 1.6
% to 82.0 % with proximal sensors and 6.0 % to 50.0 % with remote
Sensors.

Empirical data align with these findings. The Precision Crop Man-
agement project within IOF2020, utilising IoT sensors and satellite data,
achieved a 5 % reduction in nitrogen application (Precision Crop Man-
agement- [56]). The Within-Field Management Zoning Baltics use case
of IOF2020 employed hyperspectral imaging and machine learning al-
gorithms to precisely assess the nutritional demands of potato and wheat
crops, leading to substantial fertiliser cost reductions of €229.5 to €323
per hectare for potatoes and €160 to €224 per hectare for wheat.(Within
Field Management Zoning Baltics— [59])

The *GaialnFarm’ project under HORIZON 2020, using RMT and an
FMIS for fruit cultivation, reported a remarkable 50 % to 70 % decrease
in fertilisers usage (GAIA InFarm- [69]). This project utilised sensing
stations, app technology, and DSS to enhance monitoring and
decision-making processes.

Pesticide savings: RMT have made significant strides in Plant Pro-
tection Products (PPP) savings across various agricultural practices, as
evidenced by both empirical studies and real-world applications. In the
realm of literature, @rum et al. [70] demonstrated that utilising
low-dose herbicides through precision application technologies can lead
to cost reductions ranging from 20 % to 50 %. Laursen et al. [71]
introduced a weed quantification algorithm for maize that significantly
reduced herbicide use by 65 %. Yan et al. [72] explored a laser
sensor-guided spray control system in greenhouses, achieving a reduc-
tion in spray volume by 29.3 % to 51.4 %.Castaldi et al. [73], obtained
herbicide savings, based on application map, in the range of 14 % and
39.2 % compared to a uniform application. Gusev et al. [74] observed a
3.6 % reduction in PPP usage by implementing precision farming
technologies. De Bortoli et al. [75] reported up to 50 % savings in
product usage with the Structure from Linear Motion (SfLM) canopy
profiling system for sprayer control. Tewari et al. [76] utilised sonar
sensing in orchards, resulting in a 26 % reduction in PPP use.

Complementing these findings, empirical data from projects like
SDOP (Smart Detection of Pests) and the EIP-AGRI Focus Group further
reinforce these findings. The SDOP project, using optical and acoustic
sensors for pest detection, achieved a 20 % reduction in pesticide use by
enabling precise and early pest identification, leading to more targeted
applications (SDOP- [77]). The EIP-AGRI Focus Group’s work on pre-
cision fertilisation in fruit production anticipates reductions of 15-20 %
in fungicide use for stone fruit and 20-30 % for pome fruit, specifically
against powdery mildew [78].
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Water savings: Although these systems need more investigation,
RMTs contribute to the necessity of water conservation in agriculture.
Millan et al. [79] implemented an automatic irrigation scheduling sys-
tem in a hedgerow olive orchard, leveraging an algorithm that read-
justed the water balance based on soil moisture sensor data, resulting in
a 24 % reduction in water usage. Similarly, Zhe et al. [80] developed
innovative irrigation scheduling software that uses model-predicted
crop water stress to determine optimal irrigation timing and quanti-
ties, achieving water savings between 16 % and 35 %. These academic
findings are mirrored in empirical data from the Precision Crop Man-
agement initiative. Utilising a combination of IoT sensors, satellite im-
agery, and drone technology, this initiative successfully reduced
irrigation costs by 10 %, demonstrating effective water-saving strategies
and efficient water resource management in wheat cultivation. This
real-world application highlights the practical benefits and applicability
of RMT in enhancing water conservation in agricultural practices (Pre-
cision Crop Management- [56]).

Labour/Fuel/Cost savings: RMT in agriculture, encompassing a
range of precision farming tools and methods, have demonstrated sub-
stantial efficiencies and cost savings across various aspects of farm
management. Gusev et al. [74] explored the impact of precision farming
technologies on production and economic indicators in agriculture or-
ganisations, identifying a significant 6.3 % reduction in fuel consump-
tion. Concurrently, Strub et al. [81] observed a substantial cost
reduction by transitioning from Vertical Shoot Positioning (VSP) to
Mechanical Pruning (MP) training systems on steep slopes, achieving an
overall cost reduction of 34 % and 46 %, respectively. This decrease was
largely attributed to reduced machinery costs.

Complementing these studies, empirical data from the [0F2020 EU-
funded project provide real-world evidence of similar benefits. The
Added-Value Weeding Data use case within IoF2020, utilising advanced
vision systems, achieved a 5 % reduction in machine running hours by
optimising image collection and processing (Added Value Weeding
Data— [55]). This improvement in efficiency was a direct result of
enhanced image analysis capabilities, facilitating more precise weeding
operations and reducing the need for extended machine usage.
Furthermore, this approach led to a 5 % improvement in labour effi-
ciency, demonstrating how refined image processing can aid in more
accurate crop parameter calculation and enhance crop growth pre-
dictions, ultimately reducing the manual labour required for weeding
and crop monitoring (Added Value Weeding Data— [55]).

Additionally, the Precision Crop Management project within
I0F2020, applying IoT-based sensing and advanced analytics, stream-
lined operations and achieved a 5 % reduction in labour duration
(Precision Crop Management— [56]). This efficiency gain underscores
the advantages of automated and efficient monitoring methods in saving
time and optimising resource allocation, illustrating the practical impact
of RMT in enhancing labour, fuel, and cost savings in the agricultural
sector.

Environmental Benefits: Environmental benefits derived from RMT
have shown promising reductions in GHG emissions and energy use,
contributing significantly to the mitigation of global warming potential
(GWP). These technologies, particularly when integrated with precision
agriculture practices, offer direct environmental benefits through the
efficient use of resources and optimization of crop production processes.

Medel-Jiménez et al. [82] quantified the environmental impacts of
using optical crop sensors in winter wheat production, revealing an 8.6
% reduction in global warming potential, highlighting the efficacy of
crop sensors in reducing the carbon footprint of agricultural operations.
Further research by Medel-Jiménez et al. [35] underlined the potential
of crop sensors in precision agriculture to cut global warming by 17 %,
showcasing their vital role in combating climate change.

Empirical evidence further supports these findings, with the imple-
mentation of solar-powered sensors and Al-driven precision farming
leading to a 20 % drop in CO2 emissions (Solar Powered Field Sensors—
[83]). This integration of renewable energy sources and advanced
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analytics into farming practices underscores the potential for significant
environmental improvements. Moreover, the Precision Crop Manage-
ment initiative within the I0OF2020 EU-funded project leveraged IoT
technology and data-driven decision-making to notably reduce its
environmental impact, achieving a 10 % reduction in GHG emissions
and a 5 % decrease in energy usage (Precision Crop Management- [56]).
These outcomes reflect a strong commitment to environmentally sus-
tainable wheat production practices, illustrating how modern agricul-
tural technologies can lead to considerable environmental benefits.

Guidance and controlled traffic farming (CTF) technologies

Table 3 below provides a detailed and quantified overview of the
peer-reviewed papers and documents with empirical data from relevant
EU projects associated with the CTF DAT category, detailing the specific
benefits observed. These benefits include yield increase, fertiliser sav-
ings, pesticide savings, water savings, and savings in labour, fuel, and
overall costs, as well as environmental benefits.

Yield increase: CTF technologies have been consistently linked to
yield increases in various crops, as evidenced by a range of studies.
Hargreaves et al. [84] observed a 13 % increase in dry matter yield due
to CTF practices. Galambosova et al. [85] reported that CTF could
enhance yields by 35 % compared to multi-pass treatment and 9 %
compared to single-pass treatment. In the context of onion production
on sandy soils, Pedersen et al. [86] noted 19 % higher yields in CTF
simulation plots. Hefner et al. [87] demonstrated significant yield in-
creases in white cabbage, potato, and beetroot of 27 %, 70 %, and 42 %,
respectively, associated with CTF. Additionally, Hussein et al. [88]
found that CTF outperformed non-CTF practices with a 30 % higher
grain yield in average rainfall seasons, and Zhang et al. [89] documented
a 16.81 % increase in kiwifruit orchard yields using CTF technologies.
The cumulative findings from these studies, including those by Mis-
iewicz & Galambosova [90], indicate that CTF systems can increase
yields by 10-15 %, depending on soil type and operation duration. These
studies collectively demonstrate the advantages of CTF systems over
traditional multi-pass or single-pass treatments.

While empirical data specifically related to yield increases in CTF
from field applications are not readily available, the consistency and
range of improvements reported in academic studies across different
crops and soil conditions strongly suggest the potential benefits of CTF
in real-world agricultural scenarios. These benefits are primarily
attributed to optimised planting and application processes, reduced soil

Table 3
Quantitative Benefits of CTF DAT Category from Peer-Reviewed Papers and EU
Projects.

Guidance and Controlled Traffic Farming (CTF) technologies

Peer-reviewed Documents with

papers empirical data from
relevant EU project
Total Number related to CTF 20 2
Economic Benefits N° % Range N° % Range
Yield Increase 7 9-70 % - -
Fertiliser savings 6 1-26 % - -
Pesticide savings 3 1-42 % 1 30 %
Water savings 5 9-42 % 1 30-50 %
Labour/Fuel/Cost savings 8 3
Fuel savings 2-70 % 10-16 %
Environmental Benefits 4 1
Reduction in Soil Emissions 21-45 % -
Reduction in Water Runoff 28-42 % -
Reduction in Human Toxicity 3-15% -
Reduction in Eco-toxicity 11-138 % -
Reduction in Terrestrial Eutrophication 29 % -
Reduction in Climate Change Impacts 50 % -
Reduction in Chemical Runoff - 99.8 %
GHG Emissions Reduction - 56 %
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compaction, and improved overall agronomic efficiency.

Fertiliser savings: CTF technologies have been identified as effec-
tive means for reducing fertiliser usage and costs, a benefit supported by
both academic research and empirical data. Balafoutis et al. [38] noted
that in CTF systems, where fertilisers are not applied to permanent
wheel tracks, there is a potential cost reduction of 10-15 % for
narrow-spaced crops. Similarly, Soto et al. [37] reported a 15 %
reduction in fertiliser usage through the implementation of CTF. Gasso
et al. [91] observed a broader range of fertiliser reduction, between 1 %
and 26 %, depending on the context.

Tullberg [92] highlighted an even more significant aspect of CTF: an
enhancement in nitrogen efficiency by 40-80 %, attributed to reduced
soil compaction and improved soil biological activity. Hussein et al. [88]
corroborated this, demonstrating a 1.75 times increase in NUE in CTF
compared to non-CTF systems. Furthermore, Misiewicz & Galambosova
[90] found a 15 % improvement in fertiliser uptake due to less soil
compaction in CTF systems.

Pesticide savings: CTF technologies have shown promising results
in reducing PPP usage, as evidenced by both academic research and
empirical data. Masters et al. [93] discovered that the combination of
controlled traffic and early-banded application in sugarcane farming led
to a significant 32-42 % decrease in herbicide losses in runoff, which
also contributed to lower input costs. Gasso et al. [91] reported a
reduction in pesticide use ranging from 1 % to 26 % in their studies.
Furthermore, Tullberg [92] noted that CTF could potentially reduce
herbicide requirements by 25 %, attributed mainly to more timely and
efficient spraying facilitated by permanent traffic lanes.

Complementing these academic findings, empirical data from in-
novations like the Wingssprayer, a patented crop spraying technology
from the Netherlands, reinforces the fertiliser savings potential in
practical applications. The Wingssprayer enables farmers to reduce the
use of expensive spraying chemicals by up to 30 % (Wingssprayer—
[94]), showcasing the efficiency and environmental benefits of such
technologies. This reduction is achieved by focusing on eliminating
weeds, insects, and fungi within crops while preventing chemical waste
into the surrounding environment.

Water savings: CTF technologies have been identified as key con-
tributors to water savings in agricultural practices, as supported by
various studies and empirical data. Bellvert et al. [95] observed water
reductions of 13.0 % and 9.0 % for different crops through precision
irrigation in CTF systems, highlighting the efficiency of water use.
Hussein et al. [88] linked CTF to a 65 % increase in rainfall-use effi-
ciency, leading to reduced runoff and water conservation. This aligns
with yield increases, making CTF not only environmentally beneficial
but also cost-effective.

Gasso et al. [91], Thomsen et al. [96], and Macak et al. [97] con-
ducted comprehensive reviews and research, consistently finding that
CTF resulted in reductions in water runoff by 28 % to 42 % compared to
conventional farming practices. These reductions contribute signifi-
cantly to soil and water conservation by mitigating erosion and pre-
serving water quality.

Empirical evidence supporting these findings comes from the
implementation of the Wingssprayer. This technology, while primarily
focused on reducing spray agent use, also significantly decreases water
usage by 30 % to 50 % due to its efficient spraying method. The
Wingssprayer technology, through its unique aerodynamic advantages,
enhances the efficiency of spraying, thus contributing to substantial
water savings (Wingssprayer— [94]).

Labour/ Fuel/ Cost savings: CTF technologies have demonstrated
substantial benefits in reducing labour, fuel, and overall operational
costs, as shown by various studies and empirical data. Soto et al. [37]
highlighted a 4 % reduction in fuel consumption and a 6.42 % labour
saving, attributing these improvements to reduced operator error and
fatigue. Ngrremark et al. [98] focused on optimising in-field route
planning for grain harvest operations, revealing a 7 % reduction in fuel
consumption through strategic route planning and operational

Smart Agricultural Technology 8 (2024) 100441

adjustments. Cheein et al. [99] discussed how service units used in
precision agriculture, including path tracking controllers for articulated
service units, can significantly improve the efficiency of processes like
harvesting and agrochemical application. In their study, time associated
with harvesting olives was improved by approximately 42-45 %.

Pedersen et al. [100] found that auto-steer systems enhance planting
and fertiliser application efficiency, leading to cost benefits for seed,
fertiliser, and tractor fuel. Hameed et al. [101] reported that the inter-
pretation of data in specific algorithms could reduce tractor usage costs
by 2-14 %. Gasso et al. [91] showed a 23 % reduction in fuel use, while
Tullberg [92] found that CTF significantly reduces tractor fuel re-
quirements by 40 % and 70 % in different tillage scenarios compared to
conventional tillage. Misiewicz & Galambosova [90] noted a 25 % fuel
saving due to reduced soil compaction in CTF systems.

Empirical data further supports these findings. The Wingssprayer
does not require extra fuel to pump spray fluid, leading to additional fuel
savings of 10 to 20 litres per hour (Wingssprayer— [94]). The EIP-AGRI
Focus Group on "Mainstreaming Precision Farming" confirmed that CTF
reduces fuel consumption by 10 % by avoiding overlapping [78].
Additionally, the SIEUSOIL project documented that optimised routes
for farm machinery, developed using specific algorithms, were about 14
% shorter than reference trajectories, with turning costs reduced by up
to 16 % [102].

Environmental Benefits: CTF technologies have been identified as a
pivotal strategy for reducing GHG emissions and enhancing environ-
mental stewardship in agriculture. These technologies facilitate signifi-
cant reductions in fuel consumption, soil emissions of nitrous oxide
(N20), methane (CH4), and water runoff, underscoring their role in
promoting sustainable agricultural practices.

Research conducted by Gasso et al. [91] revealed that the adoption of
CTF could result in fuel savings of up to 23 %, showcasing the system’s
efficiency in energy use. Additionally, the study highlighted a reduction
in soil emissions of nitrous oxide by 21-45 %, which plays a crucial role
in diminishing the overall GHG emissions associated with farming ac-
tivities. Moreover, studies from Australia and China, as documented by
Macdk et al. [97], demonstrated that CTF could significantly reduce
water runoff by 28-42 %, thereby preventing soil erosion and protecting
aquatic ecosystems from sedimentation.

A comparative Life Cycle Assessment (LCA) conducted by Gasso et al.
[103] between CTF and random traffic farming (RTF) in Denmark
illustrated CTF’s broad environmental advantages. The study showed
reductions across various impact categories, including human toxicity
by 3-15 %, eco-toxicity by 11-138 %, terrestrial eutrophication by 29 %,
and climate change by 50 %, underscoring CTF’s potential to mitigate
environmental impacts through precise management and reduction of
agricultural inputs.

Empirical data further supports these findings. The Wingssprayer
technology, a component of CTF, has been demonstrated to prevent
waste effectively, reducing runoff to the ground by 56 %. This innova-
tion ensures minimal spray agent penetration into the groundwater,
aligning with environmental protection goals. Furthermore, the Wing-
ssprayer’s design, which blocks wind, has led to a drastic reduction in
drift by 99.8 %, substantially minimising the risk of chemical dispersal
into non-target areas (Wingssprayer— [94]).

Reacting or variable rate technologies (VRT)

Table 4 below provides a detailed and quantified overview of the
peer-reviewed papers and documents with empirical data from relevant
EU projects associated with the VRT DAT category, detailing the specific
benefits observed. These benefits include yield increase, fertiliser sav-
ings, pesticide savings, water savings, and savings in labour, fuel, and
overall costs, as well as environmental benefits.

Yield increase: VRT have demonstrated significant yield increases
across a variety of crops, showcasing the efficiency and effectiveness of
precision agriculture. In studies focusing on irrigation, Sui et al. [104]
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Table 4
Quantitative Benefits of VRT DAT Category from Peer-Reviewed Papers and EU
Projects.

Reacting or Variable Rate Technologies (VRT)

Peer-reviewed Documents with

papers empirical data from
relevant EU project

Total Number related to VRT 52 3
Economic Benefits N° % Range N° % Range
Yield Increase 13 0.8-33% 1 2%
Fertiliser savings 12 5-59% 2 22-30 %
Pesticide savings 20 8-52% 3 15-53 %
Water savings 13 2.5-50 % 2 5-34 %
Labour/Fuel/Cost savings 6 1
Cost savings 2.3-7.6 % 18.28-25 %
Fuel savings 2.8-28 % 26-29 %
Labour savings 28 % -
Environmental Benefits 6 1
GHG Emissions Reduction 15.2-17.2 % 26-29 %
Reduction in Soil N20 Emissions 10 % -
Reduction in NH3 Volatilization 23 % -
Reduction in NO3 Leaching 16 % -
Reduction in CO2 Emissions 22.6 % 26 %
Reduction in NO emissions 42 % -

and Balafoutis et al. [38] noted a 2.8 % increase in soybean yield and 0.8
% in corn yield through VRI management. The potential of VRT extends
to diverse crops, as evidenced by Samborski et al. [105] and Amaral
et al. [106] who conducted studies on VRNA, achieving yield increases
of 6.25 % and 30 %, respectively. Guerrero et al. [107] observed an
increase in yields of up to 10 %, Bergerman et al. [108] recorded a 33 %
increase in corn yield with VRF,) and Esau et al. [109] reported a 31 %
higher yield in wild blueberries using a variable-rate (VR) fungicide
application. Casa et al. [110] highlighted a 28 % increase in silage maize
yields through the use of variable rate nitrogen fertilisation (VRNF)
driven by multi-temporal clustering of archives guided by satellite data.

In the context of vineyards, Sanchez et al. [111] achieved a 10 %
increase in yield through VRI, while Nadav & Schweitzer [112] imple-
mented Variable Rate Drip Irrigation (VRDI), resulting in a 17 % in-
crease in total yield. Further supporting the benefits of VRT, Vellidis
et al. [113] introduced a dynamic control system for VRI, leading to an
8.4 % increase in yields. Additionally, Munnaf et al. [114] utilised a
multi-sensor data fusion approach for site-specific seeding in potato
production, achieving a substantial 21.94 % increase in yield. Corassa
et al. [115] found that reducing seeding rates by 18 % did not
compromise yields, offering tangible economic benefits in terms of seed
savings.

Empirical support for these findings comes from the Within Field
Management Zoning project of IOF2020, where a 2 % increase in yield
was achieved through precise field management and customised VR
application strategies (Within Field Management Zoning— [59]). This
project exemplifies the practical application of VRT in enhancing crop
productivity.

Fertiliser savings: VRT has proven to be a significant tool in
reducing fertiliser usage across a variety of agricultural settings, as
evidenced by numerous studies. Basso et al. [62] observed a 12 %
reduction in nitrogen fertiliser use in Mediterranean environments,
demonstrating the efficiency of spatially variable application. Similarly,
Lietal. [116] reduced N fertiliser use by 11 % without decreasing grain
yield, while Guerrero et al. [107] reported a substantial reduction of 19
% in nitrogen consumption through site-specific management in cereal
crops. Argento et al. [63] also achieved notable decreases in nitrogen
leaching and GHG emissions, along with improved NUE, reducing fer-
tiliser application by 5-40 % in winter wheat. Liakos et al. [117] showed
substantial savings in a Greek apple orchard, with 59.6 % and 63.4 %
less fertiliser used compared to uniform application using VRA based on
yield-based mathematical formulae.
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Further research by Colaco and Molin [67] led to a 13.1 % increase in
citrus yield alongside a significant reduction in potassium and nitrogen
applications. Chattha et al. [118] developed a VR spreader for wild
blueberries, achieving fertiliser savings between 30 % and 50 %. Van
Evert et al. [44] applied VRT in olive production, cutting down the use of
various fertilisers by substantial margins, including a 31 % reduction in
potassium fertilisers and 59 % in phosphate. Saleem et al. [119] high-
lighted a 50 % reduction in fertiliser use in wild blueberries, also noting
decreased water contamination. Soto et al. [37] emphasised the broader
impacts of precision agriculture, achieving an 8 % reduction in nitrogen
fertiliser use. Stamatiadis et al. [120] reduced total nitrogen application
by 38 % in winter wheat, translating to a 58 % increase in NUE. Addi-
tionally, Vatsanidou et al. [121] successfully implemented nitrogen VRT
in a pear orchard, leading to a 56 % and 50 % reduction in nitrogen
fertiliser usage.

Empirical data aligns with these academic findings. The Within Field
Management Zoning project of IOF2020 demonstrated a 22-30 %
reduction in nitrogen fertiliser use, highlighting the potential of VRT for
efficient resource utilisation and cost savings (Within Field Management
Zoning- [59]). The TARGIS-VRA system, adaptable to traditional agri-
cultural machines, achieved 25 % to 30 % fertiliser conservation, con-
firming that precision farming can be both effective and economically
viable, even for smaller scale operations (TARGIS-VRA- [122]).

Pesticide savings: Recent advancements in VRT have shown sig-
nificant potential for PPP savings in agriculture. These technologies,
leveraging sensor-based systems and precision agriculture techniques,
have been effective in various studies and empirical data.

Tackenberg et al. [123] achieved an 8 % fungicide savings in winter
wheat using sensor-based variable-rate application (VRA). Zhang et al.
[124] reported a 51.9 % reduction in spray volume for air-assisted
spraying based on real-time disease spot identification. Roman et al.
[125] implemented geostatistical optimisation for PPP application,
resulting in approximately 25 % savings. Gil et al. [126] and Campos
et al. [127] conducted vineyard experiments, achieving PPP reductions
of 21.9 % and over 40 %, respectively, through VR spraying. Dammer
[128] reported annual herbicide savings ranging from 30 % to 43 % in
carrot fields using a real-time VRA system.

Keller et al. [54] explored site-specific weed control, achieving her-
bicide savings of 40 %, 29 %, and 71 % for different types of weeds, with
overall savings of 36 %. Maghsoudi et al. [129] and Nackley et al. [130]
focused on precision spraying in pistachio orchards and deciduous
perennial crops, respectively, reducing PPP use by about 34.5 % and
between 67 and 80 %. Rodriguez-Lizana et al. [131] and Li et al. [132]
explored variable PPP application in olive groves and orchards, with
savings ranging from 21 % to 38 % and a 46 % reduction in spraying
volume. Kempenaar et al. [133] and Fessler et al. [134] showed average
savings of about 25 % and 54 %, respectively. Fountas et al. [50], @rum
et al. [70] and Gonzalez-de-Soto et al. [135] reported substantial her-
bicide savings of 20-50 % and 66 %, respectively, through precision
herbicide application technologies.

Additionally, Tewari et al. [136] developed a microcontroller-based
herbicide applicator for field crops, which utilised a camera and MAT-
LAB software for image processing to control herbicide application.
Their system resulted in an average of 50 % savings in herbicide usage,
with a weeding efficiency of 90 %. Vorotnikova et al. [137] evaluated a
web-based expert system for precision fungicide management in
strawberry production. The Strawberry Advisory System (SAS) led to
significant reductions in crop losses (23.7 % for anthracnose and 20 %
for Botrytis) and decreased fungicide use by 47 % for anthracnose and
49 % for Botrytis, while increasing profit by 41.6 % and 16.8 %,
respectively. Zhu et al. [80] tested a laser-guided VR air-assisted sprayer
in commercial nurseries, achieving reductions in spray volume and
chemicals by 60 % to 77.6 %, depending on the pest and nursery. Xun
et al. [138] demonstrated that advanced spraying systems in apple or-
chards could reduce PPP application by 12 % to 43 % compared to
conventional methods.
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Empirical evidence from various projects supports these findings.
The Within-Field Management Zoning Use Case within the IOF2020
project achieved substantial PPP savings by utilising advanced sensor-
based technologies, resulting in a 43 % to 53 % reduction in haulm
killing herbicide use, a 17 % decrease in weed control herbicide, and a
20 % to 25 % reduction in overall herbicide and fungicide use (Within-
Field Management Zoning- [59]). The TOAS initiative developed
intelligent drones for weed detection in crops, leading to a 15-35 %
decrease in herbicide use (TOAS - [139]). The Smart Sprayer OPTIMA,
part of the EU Horizon 2020 research project, achieved a 23 % reduction
in PPP usage [78]. The EU LIFE project Life-F3 demonstrated a reduction
of spray volume by 17.65 % [78], and the Agricultural Mechanization
Unit of the Polytechnical University of Catalonia’s OPTIMA smart
sprayer achieved a 23 % reduction in pesticide use [78]. Additional
trials with high-end Fede sprayers in Poland saved 25 % of water and
PPPs [78]. A project involving Rota Unica utilised sensors and cameras
in orchards, leading to a 20 % to 30 % reduction in PPP use [78].

Water savings: Recent developments in VRT have demonstrated
their potential in significantly reducing water consumption in agricul-
tural practices. These technologies, which employ precision agriculture
techniques and sensor-based systems, have been validated through
various studies and empirical data.

Balafoutis et al. [38] conducted computer simulations showing var-
iable water savings up to 26 % with optimised specific zone control in
centre-pivot irrigation. Vellidis et al. [140] introduced a soil moisture
sensor-based irrigation scheduling system, achieving water savings
ranging from 7.5 % to 19 %. Sui et al. [104] revealed that VRI systems
can reduce irrigation water use by 8-20 % for soybeans and 25 % for
corn. Sanchez et al. [111] reported up to a 17 % gain in water use ef-
ficiency with VRI in California vineyards.

Nadav & Schweitzer [112] implemented VRDI in vineyards,
achieving a 20 % reduction in water consumption. Modina et al. [141]
successfully applied VRI in vineyards and orchards, reducing water
usage by 20 % in vineyards and 50 % in pear orchards. Campos et al.
[127] developed canopy vigour maps using UAVs for site-specific
management, resulting in over 40 % water savings during vineyard
spraying. Bohman et al. [142] evaluated variable rate nitrogen (VRN)
and reduced irrigation management in potato production, achieving a
15 % reduction in irrigation water use.

Martello et al. [143] assessed a VRI system integrated with soil
sensor technologies, indicating improvements in irrigation water use
efficiency with increases of 35 % and 10 % in different zones. Ortuani
et al. [144] and Turker et al. [145] explored the feasibility of VRI,
reporting water savings of 18 % and a range from 2.56 % to 7.3 %,
respectively. Mendes et al. [146] presented a feasibility study of a fuzzy
VRI control system, achieving a 27 % reduction in irrigation water use.
Gutiérrez et al. [147] developed an automated irrigation system opti-
mising water use for agricultural crops, achieving water savings of up to
90 % compared with traditional irrigation practices.

Empirical data further supports these findings. The HydroSense
project applied VRI in cotton fields in Greece, showing 5 to 34 % savings
in water consumption [148]. The EU LIFE project Life-F3 demonstrated
a reduction in spray volume of plant protection products and water by
17.65 %, maintaining effective coverage [78].

Labour/Fuel/Cost savings: Recent studies have highlighted the
economic benefits of Reacting or VRT in agriculture. These technologies
optimise resource usage, leading to significant reductions in input costs,
fuel consumption, and labour hours, thereby enhancing farm profit-
ability and environmental sustainability.

Velandia et al. [140] found that VR systems could reduce the cost of
sowing by 3.5 to 22.9€/ha, which includes avoiding the need for
replanting. Kuang et al. [149] compared traditional and VR approaches
in Danish spring barley and observed an increase in lime consumption
but also an increase in yield, resulting in a net profit of €3.61/ha for the
VR approach. Daccache et al. [150] estimated the benefits to lettuce
growers in Cambridge, UK, from using VRI to be around 30 €/ha,
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especially in over-irrigated areas in humid climates. Liakos et al. [117],
based on yield-based mathematical formulas, implemented variable-rate
fertilisation (VRF) resulting in cost savings ranging from 2.3 % to 7.6 %

Soto et al. [37] noted that VRN Technology led to a 2.8 % reduction
in fuel consumption, illustrating the economic and environmental ben-
efits of precision agriculture. Manandhar et al. [151] conducted a
techno-economic evaluation of a laser-guided VR spraying system in
apple orchards, finding a significant reduction in labour hours and fuel
consumption by approximately 28 %.

Empirical data from projects like the EU LIFE project Life-F3 further
supports these findings. The project demonstrated savings by using
FEDE’s Smartomizer H30, which improved work performance by
around 26 % (from 2.25 ha/h to 3 ha/h) due to increased tractor speed
while maintaining similar fuel consumption. This led to both labour cost
savings and a 26 % reduction in fuel use. The cost savings from using the
Smartomizer H30 compared to the reference sprayer were approxi-
mately 18.28 % [78]. Additionally, a high-end Fede sprayer tested in an
apple field resulted in a 29 % reduction in spraying hours, a 25 % cost
reduction, and a 29 % fuel saving. The cost-benefit analysis for this
situation indicated financial savings of around 760 € per hectare per
year [78].

Environmental Benefits: VRT have emerged as significant con-
tributors to environmental sustainability in agriculture by offering
precise application of inputs like water, fertilisers, and pesticides, thus
enhancing resource efficiency. Studies have underscored the environ-
mental benefits of VRT, particularly in reducing GHG emissions and
optimising water use, marking a positive shift towards sustainable
farming practices. Li et al. [116] demonstrated the environmental ben-
efits of implementing a proximal sensor for VRNA achieving a 10 %
reduction in soil N20 emissions,reduction in volatilization of NH3 by 23
% and last of all 16 % reduction in NO3 leaching.Bohman et al. [142]
highlighted a 15 % reduction in GHG emissions through the imple-
mentation of VRN and Reduced Irrigation Management in potato pro-
duction. El Chami et al. [152] demonstrated the superiority of precision
irrigation systems over conventional methods by achieving a 22.6 %
reduction in CO2 emissions and a 23.0 % decrease in water use.
McCarthy et al. [153], Abalos et al. [154], and Balafoutis et al. [38]
further supported these findings, with reductions in GHGs emissions by
15.2 %, a 42 % decrease in NO emissions, and a 17.2 % reduction in
GHGs emissions, respectively. These studies collectively affirm the role
of VRT in reducing the environmental footprint of agriculture by
significantly cutting down on emissions and resource use.

Empirical data further corroborates the environmental benefits of
employing VRT in agricultural practices. A field test involving a high-
end Fede sprayer equipped with crop sensing capabilities on an apple
farm led to a 29 % reduction in GHG emissions, mirroring a similar
decrease in fuel consumption [78]. Another practical application at an
olive farm in Portugal utilised FEDE’s Smartomizer H30, which not only
improved work performance by 26 % but also achieved a 26 % decrease
in GHG emissions. This reduction was accompanied by significant eco-
nomic savings, moving from a cost of 332 €/ha per year to 271.35 €/ha
per year with the Smartomizer H3O, highlighting an 18.28 %
cost-saving [78]

Robotic systems or smart machines (RSSM) (inc. artificial intelligence
(AD)

Table 5 below provides a detailed and quantified overview of the
peer-reviewed papers and documents with empirical data from relevant
EU projects associated with the RSSM DAT category, detailing the spe-
cific benefits observed. These benefits include yield increase, fertiliser
savings, pesticide savings, water savings, and savings in labour, fuel, and
overall costs, as well as environmental benefits.

Yield increase: The studies conducted by Munnaf et al. [155] and
Kitic¢ et al. [156] on the use of sensors for site-specific silage seeding and
real-time soil analysis using robotic systems have resulted in an increase
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Table 5
Quantitative Benefits of RSSM DAT Category from Peer-Reviewed Papers and EU
Projects.

Robotic Systems or Smart Machines (RSSM) (inc. Artificial Intelligence (AI))

Documents with
empirical data from
relevant EU project

Peer-reviewed papers

Total Number related to RSSM 23 3

Economic Benefits N° % Range N° % Range
Yield Increase 4 1.7-50 % - -
Fertiliser savings 3 7.5-18 % - -
Pesticide savings 11 9.9-90 % 3 13-95 %
Water savings 2 17-75 % 1 14-26 %
Labour/Fuel/Cost savings 7 2

Labour savings 37.75-62 % -

Cost savings 17 % 40 %
Fuel savings 22.15-49.14 % 55 %
Environmental Benefits - 3

Reduction in GHG emissions - 26 %
Reduction in PPP usage - 17.65 %
Reductions in CO2 emissions - 29.3 %
Reductions in CH4 emissions - 29.3 %
Reductions in NO2 emissions - 29.3 %
Reduction in spray drift - 48 %

in yield of 4.4 % and 1.76 %, respectively. Regarding orchards, the ro-
botic systems studied by Nagasaki et al. [157] for harvesting and by Rose
& Bhattacharya [158] for precision forecasting have led to yield in-
creases of 50 % and 15 %, respectively. In the case of the study con-
ducted by Rose & Bhattacharya [158], a 10 % saving in used land was
achieved, with a 20 % reduction in damaged fruit. These developments
underscore the significant impact of advanced agricultural technologies
on yield enhancement and operational efficiency.

Fertiliser savings: The autonomous robotic systems for real-time
soil analysis studied by Kitic et al. [156] allowed for a saving of 7.5 %
in KAN fertiliser (Potassium, Ammonium, Nitrate). In the fruit cultiva-
tion field, the study conducted by Esau et al. [159] on the use of machine
vision smart sprayers for targeted agrochemical distribution in wild
blueberry fields resulted in a fertiliser saving ranging from 10 % to 12.6
%. Finally, the study conducted by Vakilian and Massah [65] on ma-
chine vision smart sprayers for targeted agrochemical distribution in
wild blueberry fields achieved an 18 % saving in nitrogen fertiliser.
These advancements are not only boosting productivity but also pro-
moting sustainable agricultural practices by curbing unnecessary
resource use.

Pesticide savings: The integration of RSSM, incorporating Al, into
modern agricultural practices has led to substantial PPP savings, high-
lighting significant strides towards sustainability. These technologies,
through precise weed detection, spot application, and sensor fusion,
have markedly reduced PPP usage, demonstrating both environmental
and economic benefits. Gonzalez-de-Soto et al. [135] showcased an
autonomous system achieving 66 % herbicide savings through precise
weed detection and spraying. Pérez-Ruiz et al. [160] observed a 45 %
reduction in applied spray volume with autonomous crop protection
technologies. Zaman et al. [161] reported fungicide savings ranging
from 9.9 % to 51.22 % with automated prototype VR sprayers in wild
blueberry fields. Partel et al. [162] highlighted a 28 % reduction in
spraying volume using sensor fusion and Al in smart tree crop sprayers.
Oberti et al. [163] noted PPP use reductions between 65 % to 85 % with
CROPS robots in grapevine spraying, while Biocca et al. [164] achieved
a 43 % reduction in copper-based PPP use with the Rovitis 4.0 auton-
omous robot. Hussain et al. [165] demonstrated savings of 42 % and 43
% in spray liquid during weed and simulated diseased plant detection
experiments with Al-based VR sprayers. Sanchez-Hermosilla et al. [166]
observed herbicide savings of 34.39 % and 35.15 % across two seasons
with leaf area estimation technologies. Rose & Bhattacharya [158]
achieved a 90 % reduction in fungicide usage with autonomous UVC
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disease treatment robots in the soft fruit sector. Tewari et al. [76] re-
ported a 26 % reduction in PPP usage with sonar sensing-based auto-
matic spraying technology. Berenstein & Edan [167] achieved a 45 %
reduction in PPP material with an automatic adjustable spraying device.

Empirical data further supports these advancements. The Smart Or-
chard Spray Application, integrated within IOF2020, recommended
precise treatment parameters based on crop conditions, leading to a 13
% to 26 % decrease in PPPs and spray volume (Smart Orchard
Treatment— [168]). The EU-FP7 project CROPS developed a precision
spraying robot for viniculture, achieving an 84 % pesticide reduction in
greenhouse tests and demonstrating the potential for up to 90 %
reduction with selective spraying [169]. The EU-funded Asterix pro-
ject’s autonomous robot, AX-1, applies eco-friendly biopesticides spar-
ingly, reducing weed killer usage by up to 95 % and suggesting a yield
increase up to 45 % in parsley root [170].

Water savings: The integration of RSSM, powered by Al, into agri-
cultural practices has demonstrated significant potential for water sav-
ings. These advanced technologies, by enabling precise irrigation
management, have shown to markedly improve water use efficiency in
agriculture. Viani et al. [171] introduced a scalable smart irrigation
system for precision agriculture, utilising a fuzzy logic strategy inte-
grated with a distributed monitoring system based on wireless sensor
network technology. This system, experimentally validated in an apple
orchard, enhanced irrigation efficiency by more than 40 % compared to
standard irrigation methods. The approach led to more accurate water
exploitation, stabilising soil moisture levels, which positively impacted
crop health and product quality. Dobbs et al. [172] explored
sensor-based automatic irrigation, achieving water savings of up to 75
%. Their study highlighted the effectiveness of using automatic rain
sensors, soil water sensors (SWS), and evapotranspiration controllers
(ET) over traditional automatic timer treatments. These technologies
applied significantly less water, with reductions ranging from 17 to 49
%, 64-75 %, and 66-70 %, respectively, demonstrating substantial im-
provements in water conservation.

Empirical evidence further supports the water-saving capabilities of
these technologies. Within the IOF2020 project, the Smart Orchard
Spray Application showcased water savings between 14 % to 26 %
through strategic application and IoT-driven precision. By optimising
spray parameters and targeting specific areas, this innovation signifi-
cantly reduced water consumption in orchard irrigation, contributing to
efficient resource utilisation and sustainable agricultural practices
(Smart Orchard Treatment- [168]).

Labour/Fuel/Cost savings: The deployment of robotics in precision
agriculture, specifically in arable farming, vineyards, and soft fruit
sectors, has evidenced considerable economic benefits, marking a sig-
nificant advancement towards efficient resource management. Lampridi
et al. [173] conducted an economic evaluation of robotics in precision
arable farming, finding that a 5 % increase in field efficiency of robots
led to a 17 % reduction in total cost per unit of time, and a labour saving
of 37.75 % by reducing the required units from four to three. Pérez-Ruiz
et al. [174] demonstrated a 57.5 % reduction in labour time with a
co-robotic intra-row weed control system, significantly decreasing the
time spent on hand hoeing in the intra-row region. On the contrary,
Bochtis et al. [175] demonstrated that the use of deterministic behaviour
robotic systems (AMS) in path planning reduced non-working time from
10.7 % to 32.4 % in inter- and intra-row operations in orchards.
Lopez-Castro et al. [176] developed a Vineyard Terrestrial Robot,
achieving a 97 % reduction in labour required for fumigation processes,
while Bechar et al. [177] highlighted that agricultural robots could
reduce manual labour required in vineyard mechanisation by 45-62 %.
Tziolas et al. [178] revealed fuel savings between 22.15 % and 49.14 %
through the use of Collaborative Robots in Greek viticulture. Rose &
Bhattacharya [158] noted substantial labour reductions in the soft fruit
sector, with packhouse labour down by 30 % and farm labour by 40 %,
attributing additional savings to logistic support robots.

Empirical data further underscores these advancements. The Smart
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Orchard Spray Application, integrating IoT-enabled airblast atomizing
sprayers, achieved a 55 % reduction in fuel consumption, equating to
€517 in fuel savings per hectare annually (Smart Orchard Treatment—
[168]). This system optimises crop protection efficiency in cherry,
apple, and almond production, minimising environmental impacts while
enhancing cost control and decision-making. Additionally, the EU-FP7
project CROPS aims to develop modular, adaptable robotic systems
that promise to reduce harvest costs by 40 %, showcasing the potential
of intelligent tools in agriculture [169].

Environmental Benefits: RSSM, incorporating AI showcased
remarkable environmental benefits, particularly in the reduction of
green missions and PPP use. EIP-AGRI Focus Group reported a 26 %
decrease in GHG emissions alongside a 17.65 % reduction in PPP usage.
Furthermore, the same study noted a significant 29.3 % reduction in
CO2, CH4, and NO2 emissions per sprayer per year, highlighting the
potential of smart technologies to mitigate environmental impact in
agricultural practices [78].

Empirical evidence supports these findings, with the Smart Orchard
Spray Application within the IOF2020 initiative demonstrating a sub-
stantial 22 % to 39 % reduction in GHG emissions. This achievement was
facilitated by the adoption of precise, IoT-enabled smart sprayers that
optimise PPP application, focusing treatment on specific zones to
minimise unnecessary usage and thereby reduce emissions. This
approach not only enhances environmental sustainability in orchard
farming but also results in a 48 % reduction in spray drift, further
contributing to the conservation of surrounding ecosystems and
reducing the potential for environmental contamination (Smart Orchard
Treatment - [168]; Smart Orchard Spray Application - [179]).

Farm management information systems (FMIS)

Table 6 below provides a detailed and quantified overview of the
peer-reviewed papers and documents with empirical data from relevant
EU projects associated with the FMIS DAT category, detailing the spe-
cific benefits observed. These benefits include yield increase, fertiliser
savings, pesticide savings, water savings, and savings in labour, fuel, and
overall costs, as well as environmental benefits.

Yield increase: FMIS has led to notable yield increases across
various agricultural sectors by harnessing the power of IoT, data

Table 6
Quantitative Benefits of FMIS DAT Category from Peer-Reviewed Papers and EU
Projects.

Farm Management Information Systems (FMIS)

Peer-reviewed Documents with

papers empirical data
from relevant
EU project
Total Number related to FMIS 14 13
Economic Benefits N° % Range N° % Range
Yield Increase 3 9-14 % 6 5-10 %
Fertiliser savings 4 14.7-46 8 5-70 %
%
Pesticide savings 4 20-61 % 6 5-15%
Water savings 8 10-50 % 11 4.3-60 %
Labour/Fuel/Cost savings 1 10
Labour savings - 10-15 %
Cost savings 20 % 5-20 %
Environmental Benefits 1 4
Input factors & Energy savings 20-30 % -
Reduction in energy consumption - 10-15 %
Energy efficiency improvement - 2.7-4.8
%

Reduction in water contamination - 5.3%
Reduction in carbon footprint - 15%
Reduction in environmental impacts & - 20 %

Disease risk

11

Smart Agricultural Technology 8 (2024) 100441

analytics, and precision agriculture techniques. Sapkota et al. [180],
demonstrated how the application of the DSS Nutrient Expert® enabled
farmers to implement site-specific nutrient management (SSNM) for
wheat. This adoption resulted in a 14 % increase in yield and 9 % in-
crease in biomass compared to conventional farming practices. Cui et al.
[181] conducted field trials across China, utilising a decision-support
program that resulted in an average yield increase of 10.8 % to 11.5
% for major crops such as maize, rice, and wheat. Karydas et al. [182]
further demonstrated the economic benefits of PreFer services in Greece,
where 33 farmers experienced significant yield improvements up to 15
% across 1864 hectares of rice, maize, cotton, and wheat cultivation.
Empirical evidence from the IoF2020 EU-funded project has signif-
icantly demonstrated the benefits of IoT-driven monitoring and preci-
sion control across various agricultural domains. The "Fresh
Table Grapes Chain" use case has shown a notable improvement in the
quality and yield of organic table grapes, with a 10 % increase in grape
size and a 5 % enhancement in sugar content (Fresh Table Grapes Chain—
[183]). Similarly, the "Soya Protein Management" initiative capitalised
on sensor-driven technologies and a DSS to enhance soybean protein
quality by 5 % and increase overall yield by the same margin, thanks to
precise irrigation management and tailored seed density applications.
In the realm of potato production, the "Data-Driven Potato Produc-
tion" initiative utilised IoT data analytics and advisory systems to
facilitate a 10 % increase in product quality, thereby boosting yield
through informed decision-making processes (Data-driven Potato
Farming— [184]). The "Chain-Integrated Greenhouse Production" use
case, which implemented IoT-based DSS and data amalgamation, ach-
ieved a significant rise in crop harvested per square metre per year,
ranging between 6.9 % and 8.3 %, specifically in greenhouse tomato
cultivation (Chain Integrated Greenhouse Production - [185]).
Furthermore, the "Automated Olive Chain’’ demonstrated how a
comprehensive IoT infrastructure could effectively monitor and adjust
irrigation and fertilisation, culminating in a 10 % increase in yield per
hectare (Automated Olive Chain - [186]). The AREAS (Agriculture
Remote Aerial Sensing) project, leveraging remote sensing and machine
learning, provided timely decision-making data that led to a 10 % yield
increase (AREAS - [187]). Lastly, TeamDev’s Agricolus DSS, a cloud
application designed for precision agriculture, utilised NDVI analysis to
predict the occurrence and spread of pests, thereby aiding in quick
disease management and potentially safeguarding yields [188].
Fertiliser savings: Integrating FMIS into agricultural practices has
led to significant fertiliser savings, demonstrating the power of tech-
nology in enhancing resource use efficiency and sustainability. The
research conducted by Cui et al. [181] across China’s major
agro-ecological zones employed a robust decision-support program,
which resulted in nitrogen application reductions by 14.7 % to 18.1 %.
Gallardo et al. [189] explored the FERTIRRIGERE V2.11 DSS for opti-
mising fertigation management in drip-irrigated tomatoes in Italy,
achieving a 46 % average reduction in nitrogen application while
maintaining production and quality standards. Li et al. [190] reported a
40 % decrease in chemical fertiliser use through a systematic
water-saving management system based on the IoT, and Cheng et al.
[191] introduced a surrogate model-assisted multiobjective algorithmic
framework for precision agriculture, demonstrating a 37 % reduction in
nitrogen application. These improvements not only contribute to cost
reduction but also align with environmentally sustainable practices.
Empirical evidence from various initiatives underscores the impact
of FMIS on fertiliser savings. The "Fresh Table Grapes Chain" within the
10F2020 EU-funded project demonstrated a reduction in fertiliser usage
by 15 % per kilogram of grapes annually, illustrating the system’s
effectiveness in promoting resource efficiency and eco-friendly agri-
cultural practices (Fresh Table Grapes Chain - [183]). Similarly, the
"Soya Protein Management" initiative realised a substantial 10 %
decrease in fertiliser use through the implementation of advanced
sensor-based technologies and precision farming practices. This reduc-
tion signifies a notable advancement towards sustainable agriculture,
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facilitated by informed decision-making based on sensor data (Soya
Protein Management - [192]).

Furthermore, the "Big Wine Optimization" project achieved signifi-
cant fertiliser cost savings of 15 %, translating to 13€ per hectare. This
initiative leveraged data analytics to optimise soil fertility and vine
health, thereby streamlining fertiliser applications and promoting cost
efficiency alongside sustainable viticulture practices (Big Wine Opti-
misation - [193]). In the "Data-Driven Potato Production" use case of the
I0F2020 project, the integration of IoT technology and satellite data
resulted in fertiliser cost savings ranging from 5 % to 15 %, alongside a
remarkable 15 % improvement in NUE. This optimisation of resource
allocation underscores the benefits of precise farming practices (Data--
driven Potato Farming - [184]). The "Automated Olive Chain" utilised
IoT-based monitoring and tailored recommendations to achieve a sig-
nificant 10 % decrease in fertiliser use. This approach guided farmers in
precise and efficient fertiliser application, enhancing sustainability and
reducing costs (Automated Olive Chain - [186]). GAIA InFarm, powered
by GAlAtrons IoT devices, offers a holistic smart farming solution that
significantly cuts fertiliser usage by 50-70 %, supporting small farmers
in optimising farming practices for better yields and environmental
conservation (GAIA InFarm - [69]).

Lastly, the Agricolus DSS developed by TeamDev provides a cloud-
based precision farming system that aids farmers and agronomists in
reducing over-fertilisation by 12-22 %, showcasing the application’s
utility in enhancing agronomic decisions [188]. The EU’s Horizon 2020
program, I0F2020, facilitated the adoption of smart solutions among
potato farmers in Poland, Cyprus, and Ukraine. These solutions, span-
ning irrigation, pest management, and fertilisation, make strategic use of
telemetry IoT stations, satellite data, and tailored scientific models
based on regional geographical characteristics. The GAIA sense smart
farming solution drives data-driven potato predictions, integrating
advanced technologies like IoT, Big Data, Earth Observation,
context-based decision support, and machine learning.The GAIA sense
solution is enhanced with FIWARE-powered data exchange mechanisms,
promoting interoperability and openness between systems. The impact
of this technology includes a 15 % improvement in NUE (Data-driven
Potato Production - [194])

Pesticide savings: Research and empirical evidence have high-
lighted the effectiveness of these technologies in optimising PPP appli-
cation, leading to significant savings and environmental benefits. rum
et al. [70] emphasised the economic efficiency of utilising low-dose
herbicides, with potential cost reductions ranging from 20 % to 50 %.
Li et al. [190] observed a 61.67 % decrease in PPP use in strawberry
cultivation with a systematic water-saving management system based on
the IoT, which also resulted in a 32.48 % reduction in PPP costs. Roman
et al. [125] reported about 25 % in PPP savings from precise, map-based
variable-dose treatments in vineyards, showcasing the advantages of
DSS in disease management.

Crop Protection Online (CPO), a DSS described by Kudsk et al. [195],
integrates decision algorithms and a herbicide dose model to optimise
herbicide choice and dosage, achieving substantial herbicide reductions
(about 60 % measured as the Treatment Frequency Index (TFI)) in spring
barley through field experiments in Denmark. This demonstrates that
decision support can significantly contribute to sustainable weed
management.

Empirical evidence from the [0F2020 EU-funded project further
underscores the impact of FMIS. The "Fresh Table Grapes Chain" use case
illustrated a 6 % decrease in PPP application per kilogram of grapes
annually, leveraging innovative IoT technologies for sustainable pest
management (Fresh Table Grapes Chain - [183]). The "Digital Ecosystem
Utilisation" use case utilised sensor-based data and predictive analytics
to monitor environmental conditions correlated with pest occurrence,
leading to a significant 5 % to 10 % decrease in the usage of PPPs (Digital
Ecosystem Utilisation - [196]). The "Big Wine Optimisation" initiative
realised a substantial 15 % reduction in PPP costs, equating to savings of
120€ per hectare by leveraging predictive analytics (Big Wine
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Optimisation - [193]). The "Data-Driven Potato Production" use case
effectively lowered PPP costs by 10 % up to 15 %, showcasing efficient
pest management strategies (Data-driven Potato Farming - [184]).
Employing weather forecasts and fertigation models within the "Chai-
n-Integrated Greenhouse Production" use case under the IOF2020
project resulted in a 5.3 % decrease in PPP use, fostering environmen-
tally conscious practices (Chain Integrated Greenhouse Production -
[185]). The Horizon 2020 program’s support for smart solutions in
potato farming has facilitated a 15 % reduction in PPP consumption by
integrating telemetric IoT stations, satellite data, and scientific models
(Data-driven Potato Production - [194]).

Water savings: Research has demonstrated the impact of these
systems on water conservation. The integration of IoT for water-saving
management in strawberry cultivation reported by Li et al. [190]
resulted in a 128 % improvement in water use efficiency. Tsirogiannis
et al. [197] showed that a participatory DSS for irrigation management
in wine grapevines led to improved crop water productivity (WPC) by
20-44 %. Miras-Avalos et al. [198] introduced the Irrigation-Advisor for
vegetable crops, achieving a 42.1 % reduction in water use. Fotia et al.
[199] indicated water savings of up to 13 % in olive cultivation, and
Cayuela et al. [200] demonstrated how FMIS could reduce water use by
20 % in oranges and tomatoes with controlled deficit irrigation strate-
gies. Cheng et al. [191] reported a 44 % reduction in water consumption
through precision agriculture management. Buono et al. [201] found
that a DSS for kiwifruit farming saved 20-25 % of water, and Tamirat
and Pedersen [202] highlighted water-saving benefits ranging from 10
% to 50 % in orchards.

Empirical evidence from the I0F2020 EU-funded project further
supports these findings. The "Fresh Table Grapes Chain" use case ach-
ieved a 20 % reduction in irrigation water usage annually by employing
IoT-enabled precision control (Fresh Table Grapes Chain - [183]). The
"Digital Ecosystem Utilisation" use case optimised irrigation schedules
through sensor data, leading to a 5 % to 10 % reduction in water con-
sumption (Digital Ecosystem Utilisation - [196]). The "Soya Protein
Management" initiative reduced irrigation costs by 10 % (Soya Protein
Management - [192]), while the "Big Wine Optimisation" project saw a
10 % reduction in water consumption (Big Wine Optimisation - [193]).
The "Data-Driven Potato Production" use case accomplished a 25 %
reduction in water consumption (Data-driven Potato Farming - [184]),
and the "Chain-Integrated Greenhouse Production" use case curtailed
water usage by 4.3 % to 5.6 % (Chain Integrated Greenhouse Production
- [185]). The "Automated Olive Chain" facilitated a 15 % reduction in
water consumption through intelligent water management (Automated
Olive Chain - [186]). GAIA InFarm, with its IoT-driven solution, slashes
irrigation water usage by up to 25 % (GAIA InFarm - [69]). The FIGARO
project estimates that its DSS can save 20-60 % of irrigation water
([203].), and SMARTAGRIFOOD?2's irrigation advice application helps
farmers reduce irrigation costs by up to 30 % [204]. Lastly, the Agricolus
DSS supports decisions leading to a 20 % reduction in water stress for
crops [188].

Labour/Fuel/Cost savings: FMIS, including DSS and QMS, have
demonstrated considerable benefits in terms of labour, fuel, and cost
savings across the agricultural sector. These systems optimise farm op-
erations, leading to enhanced productivity and efficiency while signifi-
cantly reducing operational costs. Karydas et al. [182] showcased the
economic benefits of PreFer, an FMIS offering site-specific prescription
maps for fertilisation. Farmers utilising PreFer reported yield increases
up to 15 % and input cost reductions up to 20 %, highlighting the sys-
tem’s effectiveness in simplifying fertilisation planning and application
processes.

Empirical evidence further corroborates the advantages of FMIS and
related technologies. The "Fresh Table Grapes Chain" within the IoF2020
EU-funded project optimized operations, leading to a 15 % reduction in
labour hours per kilogram of grapes harvested annually and a 20 %
decrease in irrigation costs per year (Fresh Table Grapes Chain - [183]).
The "Digital Ecosystem Utilisation" use case leveraged [oT devices and
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data analytics to streamline farm management practices, reducing the
need for physical field visits by 20 % and achieving a 10 % cost reduc-
tion per kilogram input (Digital Ecosystem Utilisation - [196]; Digital
Ecosystem Utilisation - [205]).In soybean cultivation, the "Soya Protein
Management" initiative employed advanced sensor technologies and a
tailored DSS, resulting in a 5 % reduction in production costs and work
time (Soya Protein Management - [192]). The "Big Wine Optimisation"
use case utilised tractor-mounted camera systems and multispectral
imagery to achieve a 5 % reduction in treatment frequency, indicating
significant labour savings (Big Wine Optimisation - [193]).

Furthermore, the "Data-Driven Potato Production" use case demon-
strated reductions in irrigation costs by 5 % to 25 % and total inputs
costs by 18.6 %, highlighting the efficiency of IoT stations and satellite
information in potato cultivation (Data-driven Potato Farming - [184];
Data-driven Potato Production - [194]). The "Chain-Integrated Green-
house Production" project achieved a 5.2 % reduction in crop cultivation
expenses through innovative IoT technologies and robust data analysis
(Chain Integrated Greenhouse Production - [185]).The "Automated
Olive Chain" optimised processes, reducing labor time by 10 % per ki-
logram produced and production costs by 15 %, demonstrating the
impact of IoT-powered analytics and streamlined automation on oper-
ational efficiency (Automated Olive Chain - [186]). TeamDev’s devel-
opment of the Agricolus DSS aims to support farmers and agronomists in
making informed decisions, leading to an increase in farm productivity
by 5-10 % and cost savings of 504€ per hectare, potentially saving farms
an average of 10,000€ [188].

Environmental Benefits: FMIS, including DSS and QMS, present
direct environmental benefits, notably in reducing GHG emissions and
enhancing sustainability in agricultural practices. Barradas et al. [206]
discussed the DSS-FS fertigation simulator, designed to optimise irri-
gation and fertigation systems, increasing their environmental sustain-
ability. This system, as reported by users, boosts production significantly
while saving 20-30 % in input factors and energy, illustrating the pos-
itive impact of FMIS on environmental sustainability.

Empirical evidence further supports the environmental benefits of
FMIS. The Big Wine Optimisation initiative, by installing electricity
metres and optimising power usage within cellars and wine production
areas, achieved a 10 % reduction in energy consumption. This was
realised through meticulous monitoring, control, and optimisation of
resource consumption, enhancing operational efficiency while reducing
environmental impact (Big Wine Optimisation - [193]). The
Chain-Integrated Greenhouse Production use case within the IOF2020
project improved energy efficiency by 2.7 % to 4.8 % and reduced water
contamination by 5.3 %, mitigating adverse ecological effects associated
with intensive greenhouse farming (Chain Integrated Greenhouse Pro-
duction - [185]). The Automated Olive Chain, by integrating IoT tech-
nologies, managed energy consumption across operations, resulting in a
15 % reduction. This system provided farmers with actionable insights,
enabling them to optimise energy usage and contribute to a more sus-
tainable farming environment (Automated Olive Chain - [186]). The
Agricolus DSS, developed by TeamDev, offers a cloud application to
support farmers and agronomists in making informed agronomic de-
cisions. This project claims to mitigate the carbon footprint by 15 %,
thereby reducing environmental impacts and disease risk by 20 % for
issues like Olive Fruit Fly and Phytophthora [188].

Discussion

Recording and mapping technologies (RMT) (inc. monitoring systems,
real-time location systems (RTLS))

In this category, 34 articles were identified, of which 27 were peer-
reviewed articles, and 7 were attributed to European projects. This
category of DATs is of fundamental relevance in the context of Precision
Agriculture, and the quantity of data obtained demonstrates it. Among
the numerous peer-reviewed articles, the most evident benefits were

13

Smart Agricultural Technology 8 (2024) 100441

attributed to savings and increased efficiency in fertiliser use, with the
identification of 8 valid studies. Among these, Anddjar et al. [64] ach-
ieved the most remarkable result, managing an 80 % reduction in fer-
tiliser doses applied in a vineyard through the use of aerial imagery and
ground detection, optimising input usage without compromising crop
yield.

Additional benefits of RMT were found in further studies. Squeri
et al. [60] achieved a 40 % yield increase in viticulture, thanks to
vegetative indices based on prescription maps obtained from satellite
images. Based on data from recordings and mappings, Laursen et al. [71]
introduced a weed quantification algorithm for maize that significantly
reduced herbicide use by 65 %, with positive environmental and eco-
nomic impacts. The use of recording systems was also studied by Millan
et al. [79], managing to use soil moisture sensors to reduce water usage
by 24 %. Finally, Medel-Jiménez et al. [35] highlighted the potential of
crop sensors in precision agriculture to reduce global warming by
—17.04 %, compared to a conventional agricultural management
scheme.

Regarding European projects relevant to the investigation, once
again, the most significant data is attributed to fertiliser savings. In
particular, the *GaialnFarm’ project under HORIZON 2020, using RMT
and an FMIS application for fruit cultivation, was able to achieve a
decrease in fertiliser usage between 50 % and 70 %. It should be noted
that the project utilised sensing stations, app technology, and Decision
Support Systems (DSS) to enhance monitoring and decision-making
processes. Based on what has emerged, it can be stated that the proper
use of these technologies is capable of bringing concrete benefits, such as
the use of a lower quantity of fertilisers. Furthermore, the widespread
availability of images and data (both satellite and non-satellite), if
correctly interpreted, translates into an economic benefit that contrib-
utes to higher farmer’s profits.

Guidance and controlled traffic farming (CTF) technologies

Similarly to the previous category, this category has also provided a
significant number of articles, totalling 20, while the number of projects
was the lowest among all the technologies analysed, only 2. The most
significant results in terms of benefits were found in the field of fertiliser
and fuel use and savings. The study that stands out the most for the
quality of the results achieved is the one conducted by Tullberg in 2014.
The study stated that CTF systems can improve soil biological activity
due to reduced compaction. This also leads to an improvement in Ni-
trogen Use Efficiency (NUE) between 40 % and 80 %, resulting in a
lower demand for fertilisers [92]. The study also attributed to CTF a
reduction in fuel consumption between 40 % and 70 % during all soil
cultivation operations, making this technology less impactful in terms of
consumption and sustainability [92].

Additional benefits were found in the study conducted by Hefner
et al. [87] regarding the increase in yields of white cabbage, potatoes,
and beetroots, which reached increases of 27 %, 70 %, and 42 %,
respectively, thanks to the use of CTF. The benefits of this technology
were also highlighted in the study by Hussein et al. [88], which reported
a 175 % increase in NUE and a 65 % increase in rainfall-use efficiency
due to reduced soil compaction. The use of CTF has also demonstrated
the ability to reduce herbicide requirements by 25 % [92] and decrease
soil emissions of nitrous oxide (21-45 %), as demonstrated by Gasso
et al. [91]. Regarding European projects, the best result was achieved in
terms of drift reduction. Specifically, the "Wingssprayer" project was
able to achieve a 99.8 % reduction in drift, minimising the risk of
chemical dispersal into non-target areas (Wingssprayer - [94]).

In light of the analysis, it is evident that crop management through
CTF technologies is crucial to reduce the amount of fertilisers used and
optimise the quality of operations performed. Furthermore, what has
been highlighted is indispensable within a cropping system that can be
defined as technological and sustainable. Therefore, these technologies
must be further developed and adopted on a large scale.
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Reacting or variable rate technologies (VRT)

This category has encountered the highest number of relevant peer-
reviewed articles (52), while only 3 European projects have addressed
the topic. Certainly, within a cropping system aiming to be efficient,
sustainable, and technologically accurate, this technology is vital to
reduce any kind of waste, whether it be inputs or economic resources.
This technology has also proven to generate the most significant envi-
ronmental benefit, precisely due to its ability to reduce the quantity of
PPPs used during crop operations. Thanks to the wealth of data ob-
tained, it has been possible to attribute the main benefits to two cate-
gories, namely PPP savings and water savings. Regarding PPP use, two
studies have proven highly valid, with encouraging results: the study
conducted by Tewari et al. [136] led to the creation of a system capable
of achieving a 50 % savings in herbicide use, with a weeding efficiency
of 90 %. Similarly, Zhu et al.’s [80] study allowed for a reduction in
pesticide volume between 60 % and 77.6 %. The best water management
was found in the study conducted by Modina et al. [141], where the use
of a Variable Rate Technology (VRT) irrigation system allowed for
savings of 20 % and 50 % respectively for a vineyard and a pear orchard.
In addition to these, other studies have highlighted the benefits of
variable-rate technologies. The use of variable-rate fertilisation allowed
Bergerman et al. [108] to record a 33 % increase in wheat yield
compared to conventional fertilisation.

Regarding fertiliser consumption, Van Evert et al. [44] were able to
achieve a significant reduction in potassium-based fertiliser of 31 % and
areduction in phosphate consumption of 59 %. All these benefits cannot
be classified solely as fertiliser savings but must also be considered as
economic savings and more sustainable agricultural management.
Finally, although the number of European projects in this field was not
satisfactory, the "Life-F3" project, using a high-end Fede sprayer tested in
an apple field, resulted in a 29 % reduction in spraying hours, a 25 %
cost reduction, and a 29 % fuel saving (which translates into a decrease
in greenhouse gas emissions by 29 %). The cost-benefit analysis for this
situation indicated financial savings of around €760 per hectare per year
[78]. In light of the knowledge gained, it can be said that the wise
application of VRT has the potential to produce significant environ-
mental benefits. The amount of PPPs saved through these operations
should not be underestimated, as it contributes significantly to both
pollution mitigation and economic savings. This underlines the impor-
tance of adopting precision farming practices, not only for environ-
mental sustainability but also for the economic efficiency they bring to
farming operations.

Robotic systems or smart machines (RSSM) (inc. artificial intelligence
(AD)

Within this category, it was possible to identify 23 peer-reviewed
articles and 3 European projects. The results from various research
studies and European projects focusing on RSSM have demonstrated a
significant positive impact, primarily emphasising savings in PPPs and
water. The experiment conducted by Oberti et al. [163], using the
"CROPS" robot, led to a reduction in vineyard PPP usage between 65 %
and 85 %. A slightly higher result is reported by Rose & Bhattacharya
[158], achieving a 90 % reduction in fungicide usage with autonomous
UVC disease treatment robots in the soft fruit sector.

Regarding water conservation, Dobbs et al. [172] explored
sensor-based automatic irrigation, achieving water savings of up to 75
%. Their study highlighted the effectiveness of using automatic rain
sensors, SWS, and ET compared to traditional automatic timer systems.
Furthermore, the research and projects developed have significantly
contributed to reducing the required labour and have led to appreciable
environmental benefits. Lopez-Castro et al. [176] developed a Vineyard
Terrestrial Robot, resulting in a 97 % reduction in labour required for
fumigation processes.

From the point of view of yield increase, not many studies have been
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found, apart from the one carried out by Nagasaki et al. [157] who found
a 50 % increase in yield by using a robotic harvesting system in an or-
chard. Additionally, the Smart Orchard Spray application within the
I0F2020 initiative demonstrated a substantial 22 % to 39 % reduction in
GHG emissions (Smart Orchard Spray Application - [179]). In summary,
the analysis of the RSSM category reveals a positive impact in agricul-
tural sectors. The data on which the study is based highlights significant
savings both in PPPs and in water usage. The highlighted examples
underscore the importance of such technologies.

Farm management information systems (FMIS)

The conducted research has yielded a substantial amount of data,
both concerning peer-reviewed articles (14) and, especially, European
projects (13). The lower presence of peer-reviewed articles might be
attributed to the fact that many companies and farmers do not consider
this technology crucial for better crop management, likely because they
prefer to invest in technologies with a more significant impact on their
operations, such as VRT or guidance systems. As for the analysis of data
obtained from European projects, it is noteworthy that data from pro-
jects related to FMIS rank first. This is evidently due to the fact that these
technologies intersect with the realms of data management and data
reception, elements that currently find ample space within startups and
new computing projects.

Among the many studies and projects analysed, those that have
sparked the most interest cover a range of topics, from fertiliser savings
to improved work efficiency. For instance, the DSS explored by Gallardo
et al. [189] was able to reduce nitrogen application by 46 % through a
fertigation system. In the same context, the "GAIA InFarm" project
enabled a reduction in fertiliser use by 50 % to 70 %, supporting small
farmers in optimising farming practices for better yields and environ-
mental conservation. From a water management perspective, Tsir-
ogiannis et al. [197] demonstrated that a participatory DSS for irrigation
management in wine grapevines led to improved crop water produc-
tivity (WPC) by 20-44 %.

Regarding the savings of PPPs, Li et al. [190] observed a 61.67 %
decrease in PPP use in strawberry cultivation with a systematic
water-saving management system based on the IoT, which also resulted
in a 32.48 % reduction in PPP costs. In economic terms, European
projects have shown the most interest in study. The "Big Wine Optimi-
sation" initiative achieved a substantial 15 % reduction in PPP costs,
equivalent to savings of €120 per hectare, leveraging predictive ana-
lytics (Big Wine Optimisation - [193]). Similarly, the study conducted by
Karydas et al. [182] demonstrated the economic benefits of PreFer, an
FMIS offering site-specific prescription maps for fertilisation. Farmers
utilising PreFer reported yield increases up to 15 % and input cost re-
ductions up to 20 %, highlighting the system’s effectiveness in simpli-
fying fertilisation planning and application processes.

TeamDev’s development of the Agricolus DSS aims to support
farmers and agronomists in making informed decisions, leading to an
increase in farm productivity by 5-10 % and cost savings of €504 per
hectare, potentially saving farms an average of €10,000 [188]. The same
Agricolus DSS project also claims to be able to mitigate the carbon
footprint by 15 %, demonstrating itself as a valuable environmental
resource. The highlighted studies and projects mainly focus on the
theme of fertiliser savings and all the related environmental and eco-
nomic benefits.

In conclusion, the research has provided significant contributions
through peer-reviewed articles and European projects. The latter addi-
tionally underscore an increasing significance placed on data manage-
ment and acquisition within the framework of contemporary computing
environments. This growing emphasis reflects a recognition of the
pivotal role that effective data handling plays in the success and
advancement of technological initiatives. As these projects unfold, they
not only contribute to specific objectives but also contribute to the
broader understanding of the pivotal role data management holds in
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driving innovation and efficiency in diverse sectors. This trend aligns
with the evolving landscape of technological advancements, where
informed and strategic data usage is increasingly recognised as a key
determinant of success in various fields.

Conclusion

This paper presented an integrative literature review on the eco-
nomic and environmental impacts of DATs in crop production, empha-
sising their transformative potential across various categories, including
RMT, CTF, VRT, RSSM, and FMIS. The analysis, grounded in peer-
reviewed papers and documents with empirical data from relevant EU
projects, demonstrates that DATs offer substantial economic benefits,
such as yield increases, cost savings in fertilisers, pesticides, water, la-
bour, and fuel, alongside notable environmental advantages by mini-
mising the use of chemical inputs and optimising resource utilisation.

Economically, DATs have demonstrated significant benefits across
various agricultural practices, directly impacting yield outputs and input
cost savings. Specifically, RMT has shown a potential yield increase
ranging from 9.7 % to 62.6 % across different crops, highlighting their
effectiveness in enhancing crop production efficiency. Furthermore,
advancements in CTF technologies have been linked to yield increases of
up to 70 %, demonstrating the positive impact of optimised field oper-
ations on crop productivity. In terms of input cost savings, VRT has led
to substantial reductions in the use of fertilisers and pesticides, with
studies reporting fertiliser savings of up to 59.6 % and pesticide savings
ranging between 8 % and 80 %. These reductions not only lower the
operational costs for farmers but also contribute to more targeted and
efficient resource use. Additionally, RSSM have facilitated labour and
fuel savings, with autonomous systems achieving a reduction in labour
time by up to 97 % in specific tasks and fuel savings between 22.15 %
and 49.14 % through optimised machinery use. The implementation of
FMIS has further enhanced economic efficiency by enabling better
decision-making and resource allocation, leading to a reduction in water
consumption by up to 60 % and a decrease in fertiliser use by 50-70 % in
various case studies. These systems support the strategic management of
agricultural inputs, optimising the application of water, fertilisers, and
pesticides, thereby reducing excess use and minimising costs.

From an environmental perspective, the analysis showcases DATS’
capacity to markedly improve resource use efficiency and reduce the
ecological footprint of farming practices. Specifically, the deployment of
RMT and VRT has been associated with substantial reductions in pesti-
cide usage, ranging from 20 % to 50 %, and fertiliser savings up to 80 %,
mitigating soil and water pollution. CTF technologies contribute to soil
structure preservation and reduce greenhouse gas emissions by opti-
mising field operations and minimising unnecessary soil compaction.
Furthermore, the adoption of RSSM and FMIS emphasises precision in
application and resource management, leading to notable decreases in
water usage by up to 40 % and enhancing the sustainability of water
resources.

The review has established that the economic and environmental
benefits of DATs are closely linked, with gains in efficiency directly
contributing to reduced environmental impacts. These benefits illustrate
the pivotal role of DATs in facilitating a transition toward agricultural
systems that are both more sustainable and economically viable. How-
ever, the maximisation of these benefits necessitates overcoming bar-
riers to adoption, such as the need for improved integration across DAT
platforms, the development of user-friendly interfaces for a diverse
range of users, and the creation of supportive policy environments. To
address these needs, future research should focus on developing holistic
and interoperable DAT solutions that can seamlessly integrate into
various agricultural practices. Additionally, creating policies that sup-
port the adoption and scaling of these technologies will be crucial for
their widespread implementation.

In summarising the main objectives and findings, it is clear that DATSs
offer valuable opportunities to enhance both the sustainability and
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efficiency of crop production, providing tangible economic benefits
alongside significant contributions to environmental conservation. As
the agricultural sector evolves to meet the challenges of the 21st cen-
tury, the strategic deployment of DATSs will be essential in securing food
security, economic resilience, and environmental sustainability.
Importantly, the deployment of DATs aligns with and is essential for
achieving the ambitious objectives of the European Green Deal and the
Common Agricultural Policy, which seek to transform the EU into a fair
and prosperous society with a modern, resource-efficient, and compet-
itive economy. This review calls for continued innovation and the
broader adoption of DATs, urging stakeholders to embrace digital ag-
riculture’s potential in transforming farming into a more efficient, sus-
tainable, and productive sector.
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