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A B S T R A C T   

This comprehensive review delved into the economic and environmental benefits of Digital Agricultural Tech
nologies (DATs) in crop production, synthesising data from 136 peer-reviewed papers and 28 documents with 
empirical data from relevant EU projects. This analysis highlighted the substantial contribution of DATs across 
five key categories: Recording and Mapping Technologies (RMT), Guidance and Controlled Traffic Farming (CTF) 
Technologies, Variable Rate Technologies (VRT), Robotic Systems or Smart Machines (RSSM), and Farm Man
agement Information Systems (FMIS). Specifically, it provided an overview of the various benefits that these 
technologies can deliver with the most significant ones revealing reductions of up to 80 % in fertiliser usage with 
RMT and CTF applications, while VRT demonstrated a 60 % decrease in fertiliser usage and up to 80 % reduction 
in pesticide use. VRT also showed an increase in yield by 62 %. RSSM was able to reduce labour by 97 % and 
diesel consumption by 50 %. FMIS improved yield by 10 % to 15 %, facilitating simultaneous reductions in 
labour and input costs, illustrating the critical role of integrated digital solutions in enhancing agricultural ef
ficiency and sustainability. From an environmental point of view, VRT has emerged as a major factor in envi
ronmental sustainability, demonstrating water savings of 20 % to 50 % in vineyards and pear orchards and a 
significant reduction in greenhouse gas emissions. These findings highlighted the significant benefits of DATs on 
enhancing productivity and promoting environmental sustainability. They provided a compelling case for further 
investment and research in DATs through quantifiable benefits in crop production.   

Introduction 

Agriculture plays a pivotal role in the global food production and 
supply chain, and is constantly adapting to meet the recurring chal
lenges it faces. The adoption of Digital Agricultural Technologies (DATs) 
has emerged as a prominent aspect of this transformative process, of
fering a forward-thinking perspective within the agricultural domain 
[1]. DATs broadly encompass a suite of technologies including precision 
agriculture, remote sensing, and data analytics. They differ from other 
technologies by providing an integrated approach that combines various 
digital tools and platforms to revolutionise traditional farming practices, 
whereas smart farming often refers to the application of IoT and con
nectivity solutions, and precision agriculture specifically focuses on the 
precise management of farm inputs. Together, these advancements 

facilitate informed decision-making and optimised resource use [2,3]. 
Digital agriculture encompasses a broad spectrum of technologies, 

including communication, information, and spatial analysis tools. These 
technologies enable farmers to efficiently plan, monitor, and manage 
both the operational and strategic aspects of their production systems. 
Beyond established technologies like field sensors [4–6], orbital and 
UAV-embedded remote sensors [7–9], global positioning systems, 
telemetry, and automation [10], digital agriculture is also characterised 
by the integration of the Internet and connectivity in crops [11,12], 
cloud computing, big data, blockchain, and cryptography [13–15], as 
well as deep learning [16–18], the Internet of Things (IoT) [19], mobile 
applications, and digital platforms [20,21], and artificial intelligence 
[22]. These advancements not only support critical pre- and 
post-production decisions but also promote greater sustainability within 
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production systems [23,24], offering access to differentiated markets 
that benefit short food supply chains. 

The integration of DATs is critically aligned with global sustain
ability and food security goals, particularly under the European Green 
Deal and its ’Farm to Fork Strategy’. These initiatives aim for a radical 
transformation of the food system towards sustainability, setting ambi
tious targets for the reduction of chemical pesticides and fertilisers, and 
the expansion of organic farming by 2030 [25]. DATs, encompassing 
innovations such as precision agriculture, remote sensing, and data 
analytics, are at the forefront of this transformation, offering pathways 
to harmonise economic profitability with environmental stewardship. 
These technologies enable precision resource application, efficient crop 
monitoring, and data-driven management, presenting significant ad
vantages in optimising agricultural productivity and reducing ecological 
footprints [2,23,26,27]. 

Multiple studies have analysed the adoption trends [28–30], the 
potential in improving the quality of life for rural populations [31], and 
the overall resources efficiency of the agri-food sector [32,33]. Re
searchers have extensively studied the holistic effect of DATs in the form 
of systematic process-based analyses [34,35], with the environmental 
footprint of the sector and the potential of DATs in reducing it being at 
the forefront of numerous studies [36,37]. 

The evidence supporting the transformative impact of DATs in 
agriculture is compelling, highlighting their role in enhancing yields, 
conserving resources, and mitigating environmental impacts. Such 
outcomes are vital for tackling the challenges of feeding a growing 
population while preserving natural resources and ecosystems. How
ever, harnessing the full potential of DATs necessitates a comprehensive 
analysis of their benefits, catering to the informational needs of various 
stakeholders including policymakers, farmers, and the agricultural 
industry. 

Limited research has been done in combining the environmental and 
economic parameters associated with the adoption of DATs across the 
entire agricultural sector, with most existing studies either focusing on a 
single production system [38] or a single DAT applied in different 
agricultural cases [39]. This paper aims to provide a comprehensive 
review covering both the economic and environmental benefits of DATs 
in a single manuscript, to facilitate decision-making processes, guiding 
the adoption and implementation of these technologies in line with the 
sustainability goals of the European Green Deal and the ’Farm to Fork 
Strategy’. 

The EU-funded QuantiFarm project [40], which is dedicated to 
evaluating the impact of digital agricultural solutions, actively promotes 
the integration of DATs to increase sustainability and competitiveness. 
As part of this project, an integrative literature review was conducted to 
gain a comprehensive understanding of the existing percentage and 
numerical benefits associated with the economic and environmental 
aspects of DATs in crop production. Consequently, the primary aim of 
this paper was to provide a thorough understanding of the economic and 
environmental impacts of DATs in crop production. 

Methodology 

The approach followed was grounded on an integrative review of the 
existing literature, as described by [41]. Integrative reviews offer new 
perspectives, both theoretical and conceptual, through the synthesis 
and/or critique of existing research [42]. By using this approach, the 
outcomes contribute to research by providing a comprehensive 
perspective on the topic, while also systematically organising the 
existing knowledge base in a meaningful way. 

To guide and clarify the integrative process, the general principles 
proposed by Tranfield et al. [43] are followed, which include (1) 
framing the objective, (2) executing the process, and (3) presenting the 
results [42]. 

Framing the objective 

The overall aim of this review was to provide numerical evidence of 
the economic and environmental benefits of adopting DATs. By quan
tifying the benefits associated with each DAT, the aim is to encourage 
adoption of these technologies amongst farmers, improve their under
standing of the benefits and consequently increase their willingness to 
adopt such innovations in crop production. Consequently, the paper’s 
primary objective was formulated by revisiting the core research 
questions: 

RQ1: What are the economic benefits of integrating DATs into crop 
production? 

RQ2: What environmental benefits arise from the adoption of DATs 
in crop production? 

Categorisation of DATs for crop farming systems 

To assess the predefined research questions and to ensure a well- 
structured search, searches were conducted using specific categories. 
The categorisation of the DATs of this paper was based on Van Evert 
et al. [44], which divided Precision Agricultural Technologies into 3 
categories, Recording, Guidance and Reacting. For the purpose of this 
study, these categories have been further expanded to include the wider 
spectrum of DATs into the following five categories: 

Recording and Mapping Technologies (RMT) : Characterised by 
systems to monitor and map what exists in the crop environment (soil, 
crop, micro-climate), using yield and soil mapping, Real-Time Location 
Systems (RTLS) and monitoring mechanisms, these technologies create a 
bridge between real-time field data and actionable farming strategies 
[45]. By tracing diverse field metrics, they facilitate the development of 
detailed field blueprints, thereby guiding agricultural operations in 
efficient, targeted, and environmentally-friendly directions. 

Guidance / Controlled Traffic Farming (CTF) Technologies: These 
technologies stand as a testament to innovations addressing the adverse 
impact of random vehicle movement across fields [46]. By localising all 
vehicular movement to predetermined lanes, CTF combines productiv
ity, sustainability, and profitability, ensuring soil preservation and a 
favourable environment for crop growth [47]. 

Variable Rate Technologies (VRT): VRT permits farmers to manage 
resources with precision. It paves the way for the customised distribu
tion of fertilisers, insecticides, and irrigation, aligning with individual 
crop needs. This technology has the potential to mitigate the environ
mental footprint of farming practices while also bolstering resource 
management, crop yield, and profitability [48]. 

Robotic Systems or Smart Machines (RSSM): With a combination of 
Artificial Intelligence (AI), advanced Information and Communications 
Technology (ICT), Machine-to-Machine (M2M) communication, RSSM 
mark the digital transformation of agriculture [49]. From drones to 
machine learning algorithms and robotic systems and vehicles, they 
represent the union of technology and agriculture, guiding the devel
opment of current and future agricultural paradigms. 

Farm Management Information Systems (FMIS): Evolving from 
basic record-keeping systems, today’s FMIS platforms and their resulting 
products, including Decision Support Systems (DSS) and Quality Man
agement Systems (QMS), have evolved into sophisticated holistic plat
forms. Modern agricultural FMIS allow for automated data processing, 
by syncing data streams from numerous internet of things (IoT) com
ponents (such as sensing devices and cloud services), enabling data- 
oriented decisions and efficient resource management [50]. 

Fig. 1 illustrates the categories of DATs applied in the context of crop 
farming, which are derived from the pre-existing Precision Agriculture 
Techniques. 

Execution of the literature review 

The execution step of the literature search strategy was developed 
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performing three actions: (a) identification, (b) screening, and (c) se
lection. The literature search strategy is represented in Fig. 2. 

Identification of studies via databases 
Search Strategy 
The search for relevant literature was undertaken through Scopus 

and Web of Science, electronic databases known for their comprehen
sive coverage of scientific and academic publications [42,51,52]. The 
search strategy encompassed a range of keywords related to DATs, and 
the economic and environmental aspects of these technologies. Keyword 
combinations were structured to target specific DAT categories and their 
associated economic and environmental benefits. 

General Keywords: “agriculture”, “farming”, “crop production” 
DATs Categories Keywords: "Farm Management Information Sys

tem", "FMIS", "Decision Support System", "DSS", "Guidance”, "Controlled 
Traffic Farming", "CTF", "Variable Rate Technologies", "VRT", "Recording 
Technologies", "Mapping Technologies", "Robotic Systems", "Smart 
Machines". 

Economic Benefits Keywords: “yield increase”, “fertiliser saving”, 
“pesticide saving”, “herbicide saving”, “labour saving”, “fuel saving”, 
“efficiency improvement ”, “productivity enhancement”, “cost 
reduction”. 

Environmental Benefits Keywords: “greenhouse gas emissions”, 

“nitrous oxide”, “N2O”, “methane emissions”, “CH4”, “carbon foot
print”, “groundwater quality”, “water quality”, “aquatic ecosystem”, 
“soil erosion”, “soil emissions”, “water runoff”, “environmental 
sustainability”. 

The conducted literature search resulted in a significant number of 
potential sources. In order to guarantee the incorporation of the most 
relevant and updated content, literature selection criteria and a multi- 
stage screening process was implemented. 

Literature Selection Criteria 
The formulation of the selection criteria was aimed at ensuring the 

inclusion of research that is relevant and rigorous. The following criteria 
were applied throughout the literature search: 

Relevance: The inclusion of articles depended on whether they 
addressed DATs within the context of crop systems, with a focus on their 
economic and environmental implications. 

Publication Date: A preference was given to literature published 
within the last decade (2013 to 2023) to ensure the incorporation of the 
most current information. 

Language: Inclusion of articles primarily in English, with consider
ation of articles in other languages if deemed highly relevant and if 
English translations were available. 

Multi-stage screening 
At this stage, a review of titles and abstracts of retrieved articles was 

Fig. 1. ‘Categories of DATs for Crop Farming’.  

Fig. 2. ‘Flow chart of the literature search strategy’.  
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conducted to evaluate their alignment with the research objectives and 
inclusion criteria. Subsequently, a comprehensive examination of the 
full texts of the selected articles was carried out. Studies that did not 
provide substantial information regarding the economic and environ
mental aspects of DATs in crop systems, particularly those lacking in
formation on numerical and percentage-based benefits, were excluded. 
This decision was made in line with the primary aim of the review, 
which was to record scientific data for economic and environmental 
benefits as part of the QuantiFarm project to assist farmers in optimising 
their economic returns and environmental impact. 

Identification of EU project documentations via CORDIS 
Search Strategy 
The search for relevant EU projects was undertaken through COR

DIS, the European Commission’s central repository for outcomes 
derived from projects financed by the EU’s framework programs. The 
following keywords were used to gather the projects related to the 
general context of our research. 

Keywords: “smart agriculture”, “precision farming”, “precision 
agriculture”, “smart farming”, “digital agriculture”, “digital farming”. 

In order to manage the large amount of results obtained from COR
DIS, a thorough selection process was carried out. 

Selection Criteria 
The use of specific keywords allowed for the retrieval of relevant 

materials, resulting in a significant amount of projects and their docu
mentation. All relevant files from CORDIS were downloaded for exam
ination, with a specific focus on extracting quantitative insights into the 
efficacy of DATs in crop production within the EU context. The initial 
phase of the selection involved a thorough assessment to eliminate any 
documents that did not directly contribute to the objectives of our 
research. 

Multi-stage screening 
After an initial selection process based on predefined criteria in 

Section 2.3.1, a multi-stage screening approach was used to further 
refine the dataset and isolate project documentation that specifically 
addressed the quantitative benefits of DATs in crop production. A deeper 
analysis was conducted to extract documents containing specific refer
ences to percentages and numerical benefits associated with the 
implementation of DATs in crop production. This involved reviewing 
project descriptions, reports, and findings to identify key metrics and 
data points that illustrate the impact of DATs on crop production. 

Presentation of the results 

The presentation of the results is structured to offer a comprehensive 
overview of the economic and environmental impacts of DATs in crop 
production. Given the diverse nature of DATs and their varied applica
tions in agriculture, the findings are organised into specific categories 
corresponding to the technology types identified in the methodology: 
RMT, CTF technologies, VRT, RSSM, and FMIS. 

For each category, a dual approach in presenting the results has been 
adopted: 

Quantitative Summary Tables: The number of peer-reviewed pa
pers alongside the number of documents with empirical data from 
relevant EU projects are synthesised into summary tables. These tables 
provide a clear, quantified snapshot of the number of papers and doc
uments associated with each DAT category, as well as specific benefits 
including yield increase, fertiliser savings, pesticide savings, water 
savings, labour/fuel/cost savings, and environmental benefits 
(Tables 1–6). 

Narrative Synthesis: Complementing the quantitative tables, a 
narrative synthesis followed to thoroughly examine these findings, 
presenting a coherent narrative that connects the various pieces of data. 
This narrative comprehensively examined all notable findings for each 
DAT category and each specific benefit derived from the literature and 
projects, presenting a comprehensive perspective on the advantages 

linked to DATs. It explained the mechanisms through which DATs 
deliver their advantages and the crop types that the DATs were 
implemented. 

Results 

From the screening process, a total of 160 references were selected, 
comprising 132 peer-reviewed papers and 28 documents with empirical 
data from relevant EU projects. These selections were based on their 
specific contributions to understanding the economic and environ
mental impacts of DATs. Table 1 below categorises these references 
according to their relevance to a DAT category and their provision of 
data on specific benefits. It is important to note that the total number of 
references included all sources that provided information relevant to 
one or more DAT categories. Some documents examine more than one 
DATs category, highlighting the interconnection and multifaceted ben
efits of DATs in agriculture. 

Analysing the table, it is evident that the information provided by 
scientific articles (136) are more than double that of the European 
projects (28). Delving into more detail, it is apparent that certain tech
nologies are more extensively studied and analysed than others. For 
instance, the VRT category provided 48 peer-reviewed articles, ranking 
first among all categories. From this result, it can be asserted that this 
category is of fundamental importance in all those agricultural systems 
whose primary objective is to minimise the misuse of inputs, both for 
economic reasons and environmental concerns. For this reason most 
articles in this category referred to the variable rate application of 
agricultural inputs. 

Continuing with the analysis of peer-reviewed articles that garnered 
significant interest, the ’RMT’ category ranked second with 27 articles, 
followed by the ’RSSM’ category in third place with 23 articles. With 
regard to the results obtained by RMT, this was undoubtedly attributed 
to the strong presence in today’s market of high-performance GPS de
vices at reasonable costs. This DAT category encompasses several 
technologies widely adopted in Precision Agriculture and is essential for 
the proper management of all phases of agricultural management and 
production. Concerning robotic systems, the significant number of ar
ticles was probably due to the growing popularity of these technologies, 
thanks to the substantial investments currently being made in a sector 
that is growing not only in agriculture. Finally, the categories ’CTF’ and 
’FMIS’ concluded the ranking with 20 and 14 peer-reviewed articles, 
respectively. These categories, although used in agriculture for their 
effectiveness, may be considered less crucial than other technologies 
analysed, potentially playing a less fundamental role in scientific 
research. 

Regarding the ranking of data obtained from European projects (28), 

Table 1 
Number of References related to DAT Categories.  

DAT Categories Number of 
relevant Peer- 
reviewed papers 

Number of relevant 
documents with empirical 
data from relevant EU 
projects 

Recording and Mapping 
technologies (RMT) 

27 7 

Guidance and Controlled 
Traffic Farming (CTF) 
technologies 

20 2 

Reacting or Variable Rate 
Technologies (VRT) 

52 3 

Robotic Systems or Smart 
Machines (inc. Artificial 
Intelligence (AI)) 

23 3 

Farm Management 
Information Systems 
(FMIS) 

14 13 

Total Number: 136 28  
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the first position was occupied by data derived from projects related to 
FMIS technologies. In this case, 13 specific valid data points for this 
technology were found. This situation demonstrated that the interest in 
the development of information systems is widely spread and finds space 
in the agricultural field as well. The second category with the highest 
number of data is "RMT," which presented 7 European projects. The 
various technologies falling within this DAT were studied with growing 
interest. The reason is attributed to the fact that a correct management 
support system depends on accurate recording of georeferenced data. 
Finally, the last three categories, "VRT," "RSSM," and "CTF Technolo
gies," produced 3, 3, and 2 data obtained from European projects, 
respectively. 

Recording and mapping technologies (RMT) (inc. monitoring and mapping 
systems, real-time location systems (RTLS)) 

Table 2 below provides a detailed and quantified overview of the 
peer-reviewed papers and documents with empirical data from relevant 
EU projects associated with the RMT DAT category, detailing the specific 
benefits observed. These benefits include yield increase, fertiliser sav
ings, pesticide savings, water savings, and savings in labour, fuel, and 
overall costs, as well as environmental benefits. 

Yield Increase: RMT have been instrumental in driving yield in
creases across various agricultural sectors by enabling more informed 
and precise farm management decisions. Studies such as that by Paulius 
et al. [53] have shown yield increases in organic winter wheat grown 
under low soil performance conditions, with gains ranging from 9.7 % to 
13.34 %. Keller et al. [54] observed an 8 % to 12 % yield boost in winter 
wheat from site-specific weed control, illustrating the potential of tar
geted agricultural practices. 

Yield improvements were also reported by projects like the Added- 
Value Weeding Data use case of the IOF2020 project, confirming these 
findings. Through high-resolution camera data processing, this project 
achieved a 5 % increase in lettuce yield, optimising harvest timings and 
selective harvesting in organic vegetable farming (Added Value Weed
ing Data– [55]). Similarly, the Precision Crop Management project, 
utilising IoT sensors and agronomic models, mirrored these results with 
a 5 % increase in wheat yield and quality (Precision Crop Management– 
[56]). This is in line with the results reported by Munnaf et al. [57], 
where maize grain yield increases led to a gross margin increase of up to 
$92.67 per hectare. 

The Within-Field Management Zoning Baltics initiative, part of the 
IOF2020 project, utilised hyperspectral imaging, IoT technologies, and 
AI-driven analytics to enhance crop health in potatoes and wheat. The 
project achieved substantial yield increases, ranging from 52.5 % to 62.6 
% for potatoes and 7.5 % to 8.6 % for wheat, reinforcing the findings of 

Astanakulov et al. [58] who reported significant wheat yield increases 
from 4.46 t/ha to 6.24 t/ha using GPS-equipped combines (Within Field 
Management Zoning Baltics– [59]). Further evidence from Squeri et al. 
[60] and Haghverdi et al. [61] in viticulture and irrigation management, 
respectively, with yield increases up to 40 % and 32 %, solidifies the role 
of RMT in enhancing agricultural productivity. 

Fertiliser Savings: Advancements in RMT have substantially 
enhanced fertiliser efficiency. Basso et al. [62] found a 12 % reduction in 
nitrogen fertiliser use in wheat through spatially variable nitrogen fer
tilisation in Mediterranean environments. Argento et al. [63] reported a 
reduction in nitrogen leaching, greenhouse gas (GHG) emissions, and 
improved nitrogen use efficiency (NUE) by approximately 10 % through 
site-specific nitrogen management in winter wheat, facilitated by 
remote sensing and soil data, with fertiliser application reduced by 5–40 
%. 

Andújar et al. [64] demonstrated an up to 80 % reduction in fertiliser 
dosage for vineyard crops using aerial imagery and on-ground detection, 
compared to conventional applications. In greenhouse crops, Vakilian 
and Massah [65] achieved an 18 % decrease in nitrogen fertiliser con
sumption with a farmer-assistant robot. 

Medel-Jimenez et al. [35] who achieved input savings of 14 % using 
prescription maps and 23.9 % using sensors. Colaço and Bramley [66], 
Colaço and Molin [67] and Guerrero and Mouazen [68] also provide 
literature evidence of nitrogen application reduction, ranging from 1.6 
% to 82.0 % with proximal sensors and 6.0 % to 50.0 % with remote 
sensors. 

Empirical data align with these findings. The Precision Crop Man
agement project within IOF2020, utilising IoT sensors and satellite data, 
achieved a 5 % reduction in nitrogen application (Precision Crop Man
agement– [56]). The Within-Field Management Zoning Baltics use case 
of IOF2020 employed hyperspectral imaging and machine learning al
gorithms to precisely assess the nutritional demands of potato and wheat 
crops, leading to substantial fertiliser cost reductions of €229.5 to €323 
per hectare for potatoes and €160 to €224 per hectare for wheat.(Within 
Field Management Zoning Baltics– [59]) 

The ’GaiaInFarm’ project under HORIZON 2020, using RMT and an 
FMIS for fruit cultivation, reported a remarkable 50 % to 70 % decrease 
in fertilisers usage (GAIA InFarm– [69]). This project utilised sensing 
stations, app technology, and DSS to enhance monitoring and 
decision-making processes. 

Pesticide savings: RMT have made significant strides in Plant Pro
tection Products (PPP) savings across various agricultural practices, as 
evidenced by both empirical studies and real-world applications. In the 
realm of literature, Ørum et al. [70] demonstrated that utilising 
low-dose herbicides through precision application technologies can lead 
to cost reductions ranging from 20 % to 50 %. Laursen et al. [71] 
introduced a weed quantification algorithm for maize that significantly 
reduced herbicide use by 65 %. Yan et al. [72] explored a laser 
sensor-guided spray control system in greenhouses, achieving a reduc
tion in spray volume by 29.3 % to 51.4 %.Castaldi et al. [73], obtained 
herbicide savings, based on application map, in the range of 14 % and 
39.2 % compared to a uniform application. Gusev et al. [74] observed a 
3.6 % reduction in PPP usage by implementing precision farming 
technologies. De Bortoli et al. [75] reported up to 50 % savings in 
product usage with the Structure from Linear Motion (SfLM) canopy 
profiling system for sprayer control. Tewari et al. [76] utilised sonar 
sensing in orchards, resulting in a 26 % reduction in PPP use. 

Complementing these findings, empirical data from projects like 
SDOP (Smart Detection of Pests) and the EIP-AGRI Focus Group further 
reinforce these findings. The SDOP project, using optical and acoustic 
sensors for pest detection, achieved a 20 % reduction in pesticide use by 
enabling precise and early pest identification, leading to more targeted 
applications (SDOP– [77]). The EIP-AGRI Focus Group’s work on pre
cision fertilisation in fruit production anticipates reductions of 15–20 % 
in fungicide use for stone fruit and 20–30 % for pome fruit, specifically 
against powdery mildew [78]. 

Table 2 
Quantitative Benefits of RMT DAT Category from Peer-Reviewed Papers and EU 
Projects.  

Recording and Mapping technologies (RMT)  

Peer-reviewed 
papers 

Documents with 
empirical data from 
relevant EU project 

Total Number related to RTLS 27 7 

Economic Benefits N◦ % Range N◦ % Range 

Yield Increase 6 8–40 % 3 5–62.6 % 
Fertiliser savings 8 1.6–82 % 3 5–70 % 
Pesticide savings 7 14–65 % 2 15–30 % 
Water savings 2 16–35 % 1 10 % 
Labour/Fuel/Cost savings 2  2  
Labour savings  –  5 % 
Cost savings  34–46 %  – 
Environmental Benefits 2  2  
Global Warming Potential reduction  8.6–17 %  – 
CO2 emissions reductions  –  5–20 %  
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Water savings: Although these systems need more investigation, 
RMTs contribute to the necessity of water conservation in agriculture. 
Millán et al. [79] implemented an automatic irrigation scheduling sys
tem in a hedgerow olive orchard, leveraging an algorithm that read
justed the water balance based on soil moisture sensor data, resulting in 
a 24 % reduction in water usage. Similarly, Zhe et al. [80] developed 
innovative irrigation scheduling software that uses model-predicted 
crop water stress to determine optimal irrigation timing and quanti
ties, achieving water savings between 16 % and 35 %. These academic 
findings are mirrored in empirical data from the Precision Crop Man
agement initiative. Utilising a combination of IoT sensors, satellite im
agery, and drone technology, this initiative successfully reduced 
irrigation costs by 10 %, demonstrating effective water-saving strategies 
and efficient water resource management in wheat cultivation. This 
real-world application highlights the practical benefits and applicability 
of RMT in enhancing water conservation in agricultural practices (Pre
cision Crop Management– [56]). 

Labour/Fuel/Cost savings: RMT in agriculture, encompassing a 
range of precision farming tools and methods, have demonstrated sub
stantial efficiencies and cost savings across various aspects of farm 
management. Gusev et al. [74] explored the impact of precision farming 
technologies on production and economic indicators in agriculture or
ganisations, identifying a significant 6.3 % reduction in fuel consump
tion. Concurrently, Strub et al. [81] observed a substantial cost 
reduction by transitioning from Vertical Shoot Positioning (VSP) to 
Mechanical Pruning (MP) training systems on steep slopes, achieving an 
overall cost reduction of 34 % and 46 %, respectively. This decrease was 
largely attributed to reduced machinery costs. 

Complementing these studies, empirical data from the IoF2020 EU- 
funded project provide real-world evidence of similar benefits. The 
Added-Value Weeding Data use case within IoF2020, utilising advanced 
vision systems, achieved a 5 % reduction in machine running hours by 
optimising image collection and processing (Added Value Weeding 
Data– [55]). This improvement in efficiency was a direct result of 
enhanced image analysis capabilities, facilitating more precise weeding 
operations and reducing the need for extended machine usage. 
Furthermore, this approach led to a 5 % improvement in labour effi
ciency, demonstrating how refined image processing can aid in more 
accurate crop parameter calculation and enhance crop growth pre
dictions, ultimately reducing the manual labour required for weeding 
and crop monitoring (Added Value Weeding Data– [55]). 

Additionally, the Precision Crop Management project within 
IoF2020, applying IoT-based sensing and advanced analytics, stream
lined operations and achieved a 5 % reduction in labour duration 
(Precision Crop Management– [56]). This efficiency gain underscores 
the advantages of automated and efficient monitoring methods in saving 
time and optimising resource allocation, illustrating the practical impact 
of RMT in enhancing labour, fuel, and cost savings in the agricultural 
sector. 

Environmental Benefits: Environmental benefits derived from RMT 
have shown promising reductions in GHG emissions and energy use, 
contributing significantly to the mitigation of global warming potential 
(GWP). These technologies, particularly when integrated with precision 
agriculture practices, offer direct environmental benefits through the 
efficient use of resources and optimization of crop production processes. 

Medel-Jiménez et al. [82] quantified the environmental impacts of 
using optical crop sensors in winter wheat production, revealing an 8.6 
% reduction in global warming potential, highlighting the efficacy of 
crop sensors in reducing the carbon footprint of agricultural operations. 
Further research by Medel-Jiménez et al. [35] underlined the potential 
of crop sensors in precision agriculture to cut global warming by 17 %, 
showcasing their vital role in combating climate change. 

Empirical evidence further supports these findings, with the imple
mentation of solar-powered sensors and AI-driven precision farming 
leading to a 20 % drop in CO2 emissions (Solar Powered Field Sensors– 
[83]). This integration of renewable energy sources and advanced 

analytics into farming practices underscores the potential for significant 
environmental improvements. Moreover, the Precision Crop Manage
ment initiative within the IOF2020 EU-funded project leveraged IoT 
technology and data-driven decision-making to notably reduce its 
environmental impact, achieving a 10 % reduction in GHG emissions 
and a 5 % decrease in energy usage (Precision Crop Management– [56]). 
These outcomes reflect a strong commitment to environmentally sus
tainable wheat production practices, illustrating how modern agricul
tural technologies can lead to considerable environmental benefits. 

Guidance and controlled traffic farming (CTF) technologies 

Table 3 below provides a detailed and quantified overview of the 
peer-reviewed papers and documents with empirical data from relevant 
EU projects associated with the CTF DAT category, detailing the specific 
benefits observed. These benefits include yield increase, fertiliser sav
ings, pesticide savings, water savings, and savings in labour, fuel, and 
overall costs, as well as environmental benefits. 

Yield increase: CTF technologies have been consistently linked to 
yield increases in various crops, as evidenced by a range of studies. 
Hargreaves et al. [84] observed a 13 % increase in dry matter yield due 
to CTF practices. Galambošová et al. [85] reported that CTF could 
enhance yields by 35 % compared to multi-pass treatment and 9 % 
compared to single-pass treatment. In the context of onion production 
on sandy soils, Pedersen et al. [86] noted 19 % higher yields in CTF 
simulation plots. Hefner et al. [87] demonstrated significant yield in
creases in white cabbage, potato, and beetroot of 27 %, 70 %, and 42 %, 
respectively, associated with CTF. Additionally, Hussein et al. [88] 
found that CTF outperformed non-CTF practices with a 30 % higher 
grain yield in average rainfall seasons, and Zhang et al. [89] documented 
a 16.81 % increase in kiwifruit orchard yields using CTF technologies. 
The cumulative findings from these studies, including those by Mis
iewicz & Galambosova [90], indicate that CTF systems can increase 
yields by 10–15 %, depending on soil type and operation duration. These 
studies collectively demonstrate the advantages of CTF systems over 
traditional multi-pass or single-pass treatments. 

While empirical data specifically related to yield increases in CTF 
from field applications are not readily available, the consistency and 
range of improvements reported in academic studies across different 
crops and soil conditions strongly suggest the potential benefits of CTF 
in real-world agricultural scenarios. These benefits are primarily 
attributed to optimised planting and application processes, reduced soil 

Table 3 
Quantitative Benefits of CTF DAT Category from Peer-Reviewed Papers and EU 
Projects.  

Guidance and Controlled Traffic Farming (CTF) technologies  

Peer-reviewed 
papers 

Documents with 
empirical data from 
relevant EU project 

Total Number related to CTF 20 2 

Economic Benefits N◦ % Range N◦ % Range 

Yield Increase 7 9–70 % – – 
Fertiliser savings 6 1–26 % – – 
Pesticide savings 3 1–42 % 1 30 % 
Water savings 5 9–42 % 1 30–50 % 
Labour/Fuel/Cost savings 8  3  
Fuel savings  2–70 %  10–16 % 
Environmental Benefits 4  1  
Reduction in Soil Emissions  21–45 %  – 
Reduction in Water Runoff  28–42 %  – 
Reduction in Human Toxicity  3–15 %  – 
Reduction in Eco-toxicity  11–138 %  – 
Reduction in Terrestrial Eutrophication  29 %  – 
Reduction in Climate Change Impacts  50 %  – 
Reduction in Chemical Runoff  –  99.8 % 
GHG Emissions Reduction  –  56 %  
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compaction, and improved overall agronomic efficiency. 
Fertiliser savings: CTF technologies have been identified as effec

tive means for reducing fertiliser usage and costs, a benefit supported by 
both academic research and empirical data. Balafoutis et al. [38] noted 
that in CTF systems, where fertilisers are not applied to permanent 
wheel tracks, there is a potential cost reduction of 10–15 % for 
narrow-spaced crops. Similarly, Soto et al. [37] reported a 15 % 
reduction in fertiliser usage through the implementation of CTF. Gasso 
et al. [91] observed a broader range of fertiliser reduction, between 1 % 
and 26 %, depending on the context. 

Tullberg [92] highlighted an even more significant aspect of CTF: an 
enhancement in nitrogen efficiency by 40–80 %, attributed to reduced 
soil compaction and improved soil biological activity. Hussein et al. [88] 
corroborated this, demonstrating a 1.75 times increase in NUE in CTF 
compared to non-CTF systems. Furthermore, Misiewicz & Galambosova 
[90] found a 15 % improvement in fertiliser uptake due to less soil 
compaction in CTF systems. 

Pesticide savings: CTF technologies have shown promising results 
in reducing PPP usage, as evidenced by both academic research and 
empirical data. Masters et al. [93] discovered that the combination of 
controlled traffic and early-banded application in sugarcane farming led 
to a significant 32–42 % decrease in herbicide losses in runoff, which 
also contributed to lower input costs. Gasso et al. [91] reported a 
reduction in pesticide use ranging from 1 % to 26 % in their studies. 
Furthermore, Tullberg [92] noted that CTF could potentially reduce 
herbicide requirements by 25 %, attributed mainly to more timely and 
efficient spraying facilitated by permanent traffic lanes. 

Complementing these academic findings, empirical data from in
novations like the Wingssprayer, a patented crop spraying technology 
from the Netherlands, reinforces the fertiliser savings potential in 
practical applications. The Wingssprayer enables farmers to reduce the 
use of expensive spraying chemicals by up to 30 % (Wingssprayer– 
[94]), showcasing the efficiency and environmental benefits of such 
technologies. This reduction is achieved by focusing on eliminating 
weeds, insects, and fungi within crops while preventing chemical waste 
into the surrounding environment. 

Water savings: CTF technologies have been identified as key con
tributors to water savings in agricultural practices, as supported by 
various studies and empirical data. Bellvert et al. [95] observed water 
reductions of 13.0 % and 9.0 % for different crops through precision 
irrigation in CTF systems, highlighting the efficiency of water use. 
Hussein et al. [88] linked CTF to a 65 % increase in rainfall-use effi
ciency, leading to reduced runoff and water conservation. This aligns 
with yield increases, making CTF not only environmentally beneficial 
but also cost-effective. 

Gasso et al. [91], Thomsen et al. [96], and Macák et al. [97] con
ducted comprehensive reviews and research, consistently finding that 
CTF resulted in reductions in water runoff by 28 % to 42 % compared to 
conventional farming practices. These reductions contribute signifi
cantly to soil and water conservation by mitigating erosion and pre
serving water quality. 

Empirical evidence supporting these findings comes from the 
implementation of the Wingssprayer. This technology, while primarily 
focused on reducing spray agent use, also significantly decreases water 
usage by 30 % to 50 % due to its efficient spraying method. The 
Wingssprayer technology, through its unique aerodynamic advantages, 
enhances the efficiency of spraying, thus contributing to substantial 
water savings (Wingssprayer– [94]). 

Labour/ Fuel/ Cost savings: CTF technologies have demonstrated 
substantial benefits in reducing labour, fuel, and overall operational 
costs, as shown by various studies and empirical data. Soto et al. [37] 
highlighted a 4 % reduction in fuel consumption and a 6.42 % labour 
saving, attributing these improvements to reduced operator error and 
fatigue. Nørremark et al. [98] focused on optimising in-field route 
planning for grain harvest operations, revealing a 7 % reduction in fuel 
consumption through strategic route planning and operational 

adjustments. Cheein et al. [99] discussed how service units used in 
precision agriculture, including path tracking controllers for articulated 
service units, can significantly improve the efficiency of processes like 
harvesting and agrochemical application. In their study, time associated 
with harvesting olives was improved by approximately 42–45 %. 

Pedersen et al. [100] found that auto-steer systems enhance planting 
and fertiliser application efficiency, leading to cost benefits for seed, 
fertiliser, and tractor fuel. Hameed et al. [101] reported that the inter
pretation of data in specific algorithms could reduce tractor usage costs 
by 2–14 %. Gasso et al. [91] showed a 23 % reduction in fuel use, while 
Tullberg [92] found that CTF significantly reduces tractor fuel re
quirements by 40 % and 70 % in different tillage scenarios compared to 
conventional tillage. Misiewicz & Galambosova [90] noted a 25 % fuel 
saving due to reduced soil compaction in CTF systems. 

Empirical data further supports these findings. The Wingssprayer 
does not require extra fuel to pump spray fluid, leading to additional fuel 
savings of 10 to 20 litres per hour (Wingssprayer– [94]). The EIP-AGRI 
Focus Group on "Mainstreaming Precision Farming" confirmed that CTF 
reduces fuel consumption by 10 % by avoiding overlapping [78]. 
Additionally, the SIEUSOIL project documented that optimised routes 
for farm machinery, developed using specific algorithms, were about 14 
% shorter than reference trajectories, with turning costs reduced by up 
to 16 % [102]. 

Environmental Benefits: CTF technologies have been identified as a 
pivotal strategy for reducing GHG emissions and enhancing environ
mental stewardship in agriculture. These technologies facilitate signifi
cant reductions in fuel consumption, soil emissions of nitrous oxide 
(N2O), methane (CH4), and water runoff, underscoring their role in 
promoting sustainable agricultural practices. 

Research conducted by Gasso et al. [91] revealed that the adoption of 
CTF could result in fuel savings of up to 23 %, showcasing the system’s 
efficiency in energy use. Additionally, the study highlighted a reduction 
in soil emissions of nitrous oxide by 21–45 %, which plays a crucial role 
in diminishing the overall GHG emissions associated with farming ac
tivities. Moreover, studies from Australia and China, as documented by 
Macák et al. [97], demonstrated that CTF could significantly reduce 
water runoff by 28–42 %, thereby preventing soil erosion and protecting 
aquatic ecosystems from sedimentation. 

A comparative Life Cycle Assessment (LCA) conducted by Gasso et al. 
[103] between CTF and random traffic farming (RTF) in Denmark 
illustrated CTF’s broad environmental advantages. The study showed 
reductions across various impact categories, including human toxicity 
by 3–15 %, eco-toxicity by 11–138 %, terrestrial eutrophication by 29 %, 
and climate change by 50 %, underscoring CTF’s potential to mitigate 
environmental impacts through precise management and reduction of 
agricultural inputs. 

Empirical data further supports these findings. The Wingssprayer 
technology, a component of CTF, has been demonstrated to prevent 
waste effectively, reducing runoff to the ground by 56 %. This innova
tion ensures minimal spray agent penetration into the groundwater, 
aligning with environmental protection goals. Furthermore, the Wing
ssprayer’s design, which blocks wind, has led to a drastic reduction in 
drift by 99.8 %, substantially minimising the risk of chemical dispersal 
into non-target areas (Wingssprayer– [94]). 

Reacting or variable rate technologies (VRT) 

Table 4 below provides a detailed and quantified overview of the 
peer-reviewed papers and documents with empirical data from relevant 
EU projects associated with the VRT DAT category, detailing the specific 
benefits observed. These benefits include yield increase, fertiliser sav
ings, pesticide savings, water savings, and savings in labour, fuel, and 
overall costs, as well as environmental benefits. 

Yield increase: VRT have demonstrated significant yield increases 
across a variety of crops, showcasing the efficiency and effectiveness of 
precision agriculture. In studies focusing on irrigation, Sui et al. [104] 
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and Balafoutis et al. [38] noted a 2.8 % increase in soybean yield and 0.8 
% in corn yield through VRI management. The potential of VRT extends 
to diverse crops, as evidenced by Samborski et al. [105] and Amaral 
et al. [106] who conducted studies on VRNA, achieving yield increases 
of 6.25 % and 30 %, respectively. Guerrero et al. [107] observed an 
increase in yields of up to 10 %, Bergerman et al. [108] recorded a 33 % 
increase in corn yield with VRF,) and Esau et al. [109] reported a 31 % 
higher yield in wild blueberries using a variable-rate (VR) fungicide 
application. Casa et al. [110] highlighted a 28 % increase in silage maize 
yields through the use of variable rate nitrogen fertilisation (VRNF) 
driven by multi-temporal clustering of archives guided by satellite data. 

In the context of vineyards, Sanchez et al. [111] achieved a 10 % 
increase in yield through VRI, while Nadav & Schweitzer [112] imple
mented Variable Rate Drip Irrigation (VRDI), resulting in a 17 % in
crease in total yield. Further supporting the benefits of VRT, Vellidis 
et al. [113] introduced a dynamic control system for VRI, leading to an 
8.4 % increase in yields. Additionally, Munnaf et al. [114] utilised a 
multi-sensor data fusion approach for site-specific seeding in potato 
production, achieving a substantial 21.94 % increase in yield. Corassa 
et al. [115] found that reducing seeding rates by 18 % did not 
compromise yields, offering tangible economic benefits in terms of seed 
savings. 

Empirical support for these findings comes from the Within Field 
Management Zoning project of IOF2020, where a 2 % increase in yield 
was achieved through precise field management and customised VR 
application strategies (Within Field Management Zoning– [59]). This 
project exemplifies the practical application of VRT in enhancing crop 
productivity. 

Fertiliser savings: VRT has proven to be a significant tool in 
reducing fertiliser usage across a variety of agricultural settings, as 
evidenced by numerous studies. Basso et al. [62] observed a 12 % 
reduction in nitrogen fertiliser use in Mediterranean environments, 
demonstrating the efficiency of spatially variable application. Similarly, 
Li et al. [116] reduced N fertiliser use by 11 % without decreasing grain 
yield, while Guerrero et al. [107] reported a substantial reduction of 19 
% in nitrogen consumption through site-specific management in cereal 
crops. Argento et al. [63] also achieved notable decreases in nitrogen 
leaching and GHG emissions, along with improved NUE, reducing fer
tiliser application by 5–40 % in winter wheat. Liakos et al. [117] showed 
substantial savings in a Greek apple orchard, with 59.6 % and 63.4 % 
less fertiliser used compared to uniform application using VRA based on 
yield-based mathematical formulae. 

Further research by Colaço and Molin [67] led to a 13.1 % increase in 
citrus yield alongside a significant reduction in potassium and nitrogen 
applications. Chattha et al. [118] developed a VR spreader for wild 
blueberries, achieving fertiliser savings between 30 % and 50 %. Van 
Evert et al. [44] applied VRT in olive production, cutting down the use of 
various fertilisers by substantial margins, including a 31 % reduction in 
potassium fertilisers and 59 % in phosphate. Saleem et al. [119] high
lighted a 50 % reduction in fertiliser use in wild blueberries, also noting 
decreased water contamination. Soto et al. [37] emphasised the broader 
impacts of precision agriculture, achieving an 8 % reduction in nitrogen 
fertiliser use. Stamatiadis et al. [120] reduced total nitrogen application 
by 38 % in winter wheat, translating to a 58 % increase in NUE. Addi
tionally, Vatsanidou et al. [121] successfully implemented nitrogen VRT 
in a pear orchard, leading to a 56 % and 50 % reduction in nitrogen 
fertiliser usage. 

Empirical data aligns with these academic findings. The Within Field 
Management Zoning project of IOF2020 demonstrated a 22–30 % 
reduction in nitrogen fertiliser use, highlighting the potential of VRT for 
efficient resource utilisation and cost savings (Within Field Management 
Zoning– [59]). The TARGIS-VRA system, adaptable to traditional agri
cultural machines, achieved 25 % to 30 % fertiliser conservation, con
firming that precision farming can be both effective and economically 
viable, even for smaller scale operations (TARGIS-VRA– [122]). 

Pesticide savings: Recent advancements in VRT have shown sig
nificant potential for PPP savings in agriculture. These technologies, 
leveraging sensor-based systems and precision agriculture techniques, 
have been effective in various studies and empirical data. 

Tackenberg et al. [123] achieved an 8 % fungicide savings in winter 
wheat using sensor-based variable-rate application (VRA). Zhang et al. 
[124] reported a 51.9 % reduction in spray volume for air-assisted 
spraying based on real-time disease spot identification. Román et al. 
[125] implemented geostatistical optimisation for PPP application, 
resulting in approximately 25 % savings. Gil et al. [126] and Campos 
et al. [127] conducted vineyard experiments, achieving PPP reductions 
of 21.9 % and over 40 %, respectively, through VR spraying. Dammer 
[128] reported annual herbicide savings ranging from 30 % to 43 % in 
carrot fields using a real-time VRA system. 

Keller et al. [54] explored site-specific weed control, achieving her
bicide savings of 40 %, 29 %, and 71 % for different types of weeds, with 
overall savings of 36 %. Maghsoudi et al. [129] and Nackley et al. [130] 
focused on precision spraying in pistachio orchards and deciduous 
perennial crops, respectively, reducing PPP use by about 34.5 % and 
between 67 and 80 %. Rodriguez-Lizana et al. [131] and Li et al. [132] 
explored variable PPP application in olive groves and orchards, with 
savings ranging from 21 % to 38 % and a 46 % reduction in spraying 
volume. Kempenaar et al. [133] and Fessler et al. [134] showed average 
savings of about 25 % and 54 %, respectively. Fountas et al. [50], Ørum 
et al. [70] and Gonzalez-de-Soto et al. [135] reported substantial her
bicide savings of 20–50 % and 66 %, respectively, through precision 
herbicide application technologies. 

Additionally, Tewari et al. [136] developed a microcontroller-based 
herbicide applicator for field crops, which utilised a camera and MAT
LAB software for image processing to control herbicide application. 
Their system resulted in an average of 50 % savings in herbicide usage, 
with a weeding efficiency of 90 %. Vorotnikova et al. [137] evaluated a 
web-based expert system for precision fungicide management in 
strawberry production. The Strawberry Advisory System (SAS) led to 
significant reductions in crop losses (23.7 % for anthracnose and 20 % 
for Botrytis) and decreased fungicide use by 47 % for anthracnose and 
49 % for Botrytis, while increasing profit by 41.6 % and 16.8 %, 
respectively. Zhu et al. [80] tested a laser-guided VR air-assisted sprayer 
in commercial nurseries, achieving reductions in spray volume and 
chemicals by 60 % to 77.6 %, depending on the pest and nursery. Xun 
et al. [138] demonstrated that advanced spraying systems in apple or
chards could reduce PPP application by 12 % to 43 % compared to 
conventional methods. 

Table 4 
Quantitative Benefits of VRT DAT Category from Peer-Reviewed Papers and EU 
Projects.  

Reacting or Variable Rate Technologies (VRT)  

Peer-reviewed 
papers 

Documents with 
empirical data from 
relevant EU project 

Total Number related to VRT 52 3 

Economic Benefits N◦ % Range N◦ % Range 

Yield Increase 13 0.8–33 % 1 2 % 
Fertiliser savings 12 5–59 % 2 22–30 % 
Pesticide savings 20 8–52 % 3 15–53 % 
Water savings 13 2.5–50 % 2 5–34 % 
Labour/Fuel/Cost savings 6  1  
Cost savings  2.3–7.6 %  18.28–25 % 
Fuel savings  2.8–28 %  26–29 % 
Labour savings  28 %  – 
Environmental Benefits 6  1  
GHG Emissions Reduction  15.2–17.2 %  26–29 % 
Reduction in Soil N2O Emissions  10 %  – 
Reduction in NH3 Volatilization  23 %  – 
Reduction in NO3 Leaching  16 %  – 
Reduction in CO2 Emissions  22.6 %  26 % 
Reduction in NO emissions  42 %  –  

G. Papadopoulos et al.                                                                                                                                                                                                                         



Smart Agricultural Technology 8 (2024) 100441

9

Empirical evidence from various projects supports these findings. 
The Within-Field Management Zoning Use Case within the IOF2020 
project achieved substantial PPP savings by utilising advanced sensor- 
based technologies, resulting in a 43 % to 53 % reduction in haulm 
killing herbicide use, a 17 % decrease in weed control herbicide, and a 
20 % to 25 % reduction in overall herbicide and fungicide use (Within- 
Field Management Zoning– [59]). The TOAS initiative developed 
intelligent drones for weed detection in crops, leading to a 15–35 % 
decrease in herbicide use (TOAS - [139]). The Smart Sprayer OPTIMA, 
part of the EU Horizon 2020 research project, achieved a 23 % reduction 
in PPP usage [78]. The EU LIFE project Life-F3 demonstrated a reduction 
of spray volume by 17.65 % [78], and the Agricultural Mechanization 
Unit of the Polytechnical University of Catalonia’s OPTIMA smart 
sprayer achieved a 23 % reduction in pesticide use [78]. Additional 
trials with high-end Fede sprayers in Poland saved 25 % of water and 
PPPs [78]. A project involving Rota Unica utilised sensors and cameras 
in orchards, leading to a 20 % to 30 % reduction in PPP use [78]. 

Water savings: Recent developments in VRT have demonstrated 
their potential in significantly reducing water consumption in agricul
tural practices. These technologies, which employ precision agriculture 
techniques and sensor-based systems, have been validated through 
various studies and empirical data. 

Balafoutis et al. [38] conducted computer simulations showing var
iable water savings up to 26 % with optimised specific zone control in 
centre-pivot irrigation. Vellidis et al. [140] introduced a soil moisture 
sensor-based irrigation scheduling system, achieving water savings 
ranging from 7.5 % to 19 %. Sui et al. [104] revealed that VRI systems 
can reduce irrigation water use by 8–20 % for soybeans and 25 % for 
corn. Sanchez et al. [111] reported up to a 17 % gain in water use ef
ficiency with VRI in California vineyards. 

Nadav & Schweitzer [112] implemented VRDI in vineyards, 
achieving a 20 % reduction in water consumption. Modina et al. [141] 
successfully applied VRI in vineyards and orchards, reducing water 
usage by 20 % in vineyards and 50 % in pear orchards. Campos et al. 
[127] developed canopy vigour maps using UAVs for site-specific 
management, resulting in over 40 % water savings during vineyard 
spraying. Bohman et al. [142] evaluated variable rate nitrogen (VRN) 
and reduced irrigation management in potato production, achieving a 
15 % reduction in irrigation water use. 

Martello et al. [143] assessed a VRI system integrated with soil 
sensor technologies, indicating improvements in irrigation water use 
efficiency with increases of 35 % and 10 % in different zones. Ortuani 
et al. [144] and Turker et al. [145] explored the feasibility of VRI, 
reporting water savings of 18 % and a range from 2.56 % to 7.3 %, 
respectively. Mendes et al. [146] presented a feasibility study of a fuzzy 
VRI control system, achieving a 27 % reduction in irrigation water use. 
Gutiérrez et al. [147] developed an automated irrigation system opti
mising water use for agricultural crops, achieving water savings of up to 
90 % compared with traditional irrigation practices. 

Empirical data further supports these findings. The HydroSense 
project applied VRI in cotton fields in Greece, showing 5 to 34 % savings 
in water consumption [148]. The EU LIFE project Life-F3 demonstrated 
a reduction in spray volume of plant protection products and water by 
17.65 %, maintaining effective coverage [78]. 

Labour/Fuel/Cost savings: Recent studies have highlighted the 
economic benefits of Reacting or VRT in agriculture. These technologies 
optimise resource usage, leading to significant reductions in input costs, 
fuel consumption, and labour hours, thereby enhancing farm profit
ability and environmental sustainability. 

Velandia et al. [140] found that VR systems could reduce the cost of 
sowing by 3.5 to 22.9€/ha, which includes avoiding the need for 
replanting. Kuang et al. [149] compared traditional and VR approaches 
in Danish spring barley and observed an increase in lime consumption 
but also an increase in yield, resulting in a net profit of €3.61/ha for the 
VR approach. Daccache et al. [150] estimated the benefits to lettuce 
growers in Cambridge, UK, from using VRI to be around 30 €/ha, 

especially in over-irrigated areas in humid climates. Liakos et al. [117], 
based on yield-based mathematical formulas, implemented variable-rate 
fertilisation (VRF) resulting in cost savings ranging from 2.3 % to 7.6 % 

Soto et al. [37] noted that VRN Technology led to a 2.8 % reduction 
in fuel consumption, illustrating the economic and environmental ben
efits of precision agriculture. Manandhar et al. [151] conducted a 
techno-economic evaluation of a laser-guided VR spraying system in 
apple orchards, finding a significant reduction in labour hours and fuel 
consumption by approximately 28 %. 

Empirical data from projects like the EU LIFE project Life-F3 further 
supports these findings. The project demonstrated savings by using 
FEDE’s Smartomizer H3O, which improved work performance by 
around 26 % (from 2.25 ha/h to 3 ha/h) due to increased tractor speed 
while maintaining similar fuel consumption. This led to both labour cost 
savings and a 26 % reduction in fuel use. The cost savings from using the 
Smartomizer H3O compared to the reference sprayer were approxi
mately 18.28 % [78]. Additionally, a high-end Fede sprayer tested in an 
apple field resulted in a 29 % reduction in spraying hours, a 25 % cost 
reduction, and a 29 % fuel saving. The cost-benefit analysis for this 
situation indicated financial savings of around 760 € per hectare per 
year [78]. 

Environmental Benefits: VRT have emerged as significant con
tributors to environmental sustainability in agriculture by offering 
precise application of inputs like water, fertilisers, and pesticides, thus 
enhancing resource efficiency. Studies have underscored the environ
mental benefits of VRT, particularly in reducing GHG emissions and 
optimising water use, marking a positive shift towards sustainable 
farming practices. Li et al. [116] demonstrated the environmental ben
efits of implementing a proximal sensor for VRNA achieving a 10 % 
reduction in soil N2O emissions,reduction in volatilization of NH3 by 23 
% and last of all 16 % reduction in NO3 leaching.Bohman et al. [142] 
highlighted a 15 % reduction in GHG emissions through the imple
mentation of VRN and Reduced Irrigation Management in potato pro
duction. El Chami et al. [152] demonstrated the superiority of precision 
irrigation systems over conventional methods by achieving a 22.6 % 
reduction in CO2 emissions and a 23.0 % decrease in water use. 
McCarthy et al. [153], Abalos et al. [154], and Balafoutis et al. [38] 
further supported these findings, with reductions in GHGs emissions by 
15.2 %, a 42 % decrease in NO emissions, and a 17.2 % reduction in 
GHGs emissions, respectively. These studies collectively affirm the role 
of VRT in reducing the environmental footprint of agriculture by 
significantly cutting down on emissions and resource use. 

Empirical data further corroborates the environmental benefits of 
employing VRT in agricultural practices. A field test involving a high- 
end Fede sprayer equipped with crop sensing capabilities on an apple 
farm led to a 29 % reduction in GHG emissions, mirroring a similar 
decrease in fuel consumption [78]. Another practical application at an 
olive farm in Portugal utilised FEDE’s Smartomizer H3O, which not only 
improved work performance by 26 % but also achieved a 26 % decrease 
in GHG emissions. This reduction was accompanied by significant eco
nomic savings, moving from a cost of 332 €/ha per year to 271.35 €/ha 
per year with the Smartomizer H3O, highlighting an 18.28 % 
cost-saving [78] 

Robotic systems or smart machines (RSSM) (inc. artificial intelligence 
(AI)) 

Table 5 below provides a detailed and quantified overview of the 
peer-reviewed papers and documents with empirical data from relevant 
EU projects associated with the RSSM DAT category, detailing the spe
cific benefits observed. These benefits include yield increase, fertiliser 
savings, pesticide savings, water savings, and savings in labour, fuel, and 
overall costs, as well as environmental benefits. 

Yield increase: The studies conducted by Munnaf et al. [155] and 
Kitić et al. [156] on the use of sensors for site-specific silage seeding and 
real-time soil analysis using robotic systems have resulted in an increase 
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in yield of 4.4 % and 1.76 %, respectively. Regarding orchards, the ro
botic systems studied by Nagasaki et al. [157] for harvesting and by Rose 
& Bhattacharya [158] for precision forecasting have led to yield in
creases of 50 % and 15 %, respectively. In the case of the study con
ducted by Rose & Bhattacharya [158], a 10 % saving in used land was 
achieved, with a 20 % reduction in damaged fruit. These developments 
underscore the significant impact of advanced agricultural technologies 
on yield enhancement and operational efficiency. 

Fertiliser savings: The autonomous robotic systems for real-time 
soil analysis studied by Kitic et al. [156] allowed for a saving of 7.5 % 
in KAN fertiliser (Potassium, Ammonium, Nitrate). In the fruit cultiva
tion field, the study conducted by Esau et al. [159] on the use of machine 
vision smart sprayers for targeted agrochemical distribution in wild 
blueberry fields resulted in a fertiliser saving ranging from 10 % to 12.6 
%. Finally, the study conducted by Vakilian and Massah [65] on ma
chine vision smart sprayers for targeted agrochemical distribution in 
wild blueberry fields achieved an 18 % saving in nitrogen fertiliser. 
These advancements are not only boosting productivity but also pro
moting sustainable agricultural practices by curbing unnecessary 
resource use. 

Pesticide savings: The integration of RSSM, incorporating AI, into 
modern agricultural practices has led to substantial PPP savings, high
lighting significant strides towards sustainability. These technologies, 
through precise weed detection, spot application, and sensor fusion, 
have markedly reduced PPP usage, demonstrating both environmental 
and economic benefits. Gonzalez-de-Soto et al. [135] showcased an 
autonomous system achieving 66 % herbicide savings through precise 
weed detection and spraying. Pérez-Ruiz et al. [160] observed a 45 % 
reduction in applied spray volume with autonomous crop protection 
technologies. Zaman et al. [161] reported fungicide savings ranging 
from 9.9 % to 51.22 % with automated prototype VR sprayers in wild 
blueberry fields. Partel et al. [162] highlighted a 28 % reduction in 
spraying volume using sensor fusion and AI in smart tree crop sprayers. 
Oberti et al. [163] noted PPP use reductions between 65 % to 85 % with 
CROPS robots in grapevine spraying, while Biocca et al. [164] achieved 
a 43 % reduction in copper-based PPP use with the Rovitis 4.0 auton
omous robot. Hussain et al. [165] demonstrated savings of 42 % and 43 
% in spray liquid during weed and simulated diseased plant detection 
experiments with AI-based VR sprayers. Sanchez-Hermosilla et al. [166] 
observed herbicide savings of 34.39 % and 35.15 % across two seasons 
with leaf area estimation technologies. Rose & Bhattacharya [158] 
achieved a 90 % reduction in fungicide usage with autonomous UVC 

disease treatment robots in the soft fruit sector. Tewari et al. [76] re
ported a 26 % reduction in PPP usage with sonar sensing-based auto
matic spraying technology. Berenstein & Edan [167] achieved a 45 % 
reduction in PPP material with an automatic adjustable spraying device. 

Empirical data further supports these advancements. The Smart Or
chard Spray Application, integrated within IOF2020, recommended 
precise treatment parameters based on crop conditions, leading to a 13 
% to 26 % decrease in PPPs and spray volume (Smart Orchard 
Treatment– [168]). The EU-FP7 project CROPS developed a precision 
spraying robot for viniculture, achieving an 84 % pesticide reduction in 
greenhouse tests and demonstrating the potential for up to 90 % 
reduction with selective spraying [169]. The EU-funded Asterix pro
ject’s autonomous robot, AX-1, applies eco-friendly biopesticides spar
ingly, reducing weed killer usage by up to 95 % and suggesting a yield 
increase up to 45 % in parsley root [170]. 

Water savings: The integration of RSSM, powered by AI, into agri
cultural practices has demonstrated significant potential for water sav
ings. These advanced technologies, by enabling precise irrigation 
management, have shown to markedly improve water use efficiency in 
agriculture. Viani et al. [171] introduced a scalable smart irrigation 
system for precision agriculture, utilising a fuzzy logic strategy inte
grated with a distributed monitoring system based on wireless sensor 
network technology. This system, experimentally validated in an apple 
orchard, enhanced irrigation efficiency by more than 40 % compared to 
standard irrigation methods. The approach led to more accurate water 
exploitation, stabilising soil moisture levels, which positively impacted 
crop health and product quality. Dobbs et al. [172] explored 
sensor-based automatic irrigation, achieving water savings of up to 75 
%. Their study highlighted the effectiveness of using automatic rain 
sensors, soil water sensors (SWS), and evapotranspiration controllers 
(ET) over traditional automatic timer treatments. These technologies 
applied significantly less water, with reductions ranging from 17 to 49 
%, 64–75 %, and 66–70 %, respectively, demonstrating substantial im
provements in water conservation. 

Empirical evidence further supports the water-saving capabilities of 
these technologies. Within the IOF2020 project, the Smart Orchard 
Spray Application showcased water savings between 14 % to 26 % 
through strategic application and IoT-driven precision. By optimising 
spray parameters and targeting specific areas, this innovation signifi
cantly reduced water consumption in orchard irrigation, contributing to 
efficient resource utilisation and sustainable agricultural practices 
(Smart Orchard Treatment– [168]). 

Labour/Fuel/Cost savings: The deployment of robotics in precision 
agriculture, specifically in arable farming, vineyards, and soft fruit 
sectors, has evidenced considerable economic benefits, marking a sig
nificant advancement towards efficient resource management. Lampridi 
et al. [173] conducted an economic evaluation of robotics in precision 
arable farming, finding that a 5 % increase in field efficiency of robots 
led to a 17 % reduction in total cost per unit of time, and a labour saving 
of 37.75 % by reducing the required units from four to three. Pérez-Ruíz 
et al. [174] demonstrated a 57.5 % reduction in labour time with a 
co-robotic intra-row weed control system, significantly decreasing the 
time spent on hand hoeing in the intra-row region. On the contrary, 
Bochtis et al. [175] demonstrated that the use of deterministic behaviour 
robotic systems (AMS) in path planning reduced non-working time from 
10.7 % to 32.4 % in inter- and intra-row operations in orchards. 
Lopez-Castro et al. [176] developed a Vineyard Terrestrial Robot, 
achieving a 97 % reduction in labour required for fumigation processes, 
while Bechar et al. [177] highlighted that agricultural robots could 
reduce manual labour required in vineyard mechanisation by 45–62 %. 
Tziolas et al. [178] revealed fuel savings between 22.15 % and 49.14 % 
through the use of Collaborative Robots in Greek viticulture. Rose & 
Bhattacharya [158] noted substantial labour reductions in the soft fruit 
sector, with packhouse labour down by 30 % and farm labour by 40 %, 
attributing additional savings to logistic support robots. 

Empirical data further underscores these advancements. The Smart 

Table 5 
Quantitative Benefits of RSSM DAT Category from Peer-Reviewed Papers and EU 
Projects.  

Robotic Systems or Smart Machines (RSSM) (inc. Artificial Intelligence (AI))  

Peer-reviewed papers Documents with 
empirical data from 
relevant EU project 

Total Number related to RSSM 23 3 

Economic Benefits N◦ % Range N◦ % Range 

Yield Increase 4 1.7–50 % – – 
Fertiliser savings 3 7.5–18 % – – 
Pesticide savings 11 9.9–90 % 3 13–95 % 
Water savings 2 17–75 % 1 14–26 % 
Labour/Fuel/Cost savings 7  2  
Labour savings  37.75–62 %  – 
Cost savings  17 %  40 % 
Fuel savings  22.15–49.14 %  55 % 
Environmental Benefits –  3  
Reduction in GHG emissions  –  26 % 
Reduction in PPP usage  –  17.65 % 
Reductions in CO2 emissions  –  29.3 % 
Reductions in CH4 emissions  –  29.3 % 
Reductions in NO2 emissions  –  29.3 % 
Reduction in spray drift  –  48 %  

G. Papadopoulos et al.                                                                                                                                                                                                                         



Smart Agricultural Technology 8 (2024) 100441

11

Orchard Spray Application, integrating IoT-enabled airblast atomizing 
sprayers, achieved a 55 % reduction in fuel consumption, equating to 
€517 in fuel savings per hectare annually (Smart Orchard Treatment– 
[168]). This system optimises crop protection efficiency in cherry, 
apple, and almond production, minimising environmental impacts while 
enhancing cost control and decision-making. Additionally, the EU-FP7 
project CROPS aims to develop modular, adaptable robotic systems 
that promise to reduce harvest costs by 40 %, showcasing the potential 
of intelligent tools in agriculture [169]. 

Environmental Benefits: RSSM, incorporating AI showcased 
remarkable environmental benefits, particularly in the reduction of 
green missions and PPP use. EIP-AGRI Focus Group reported a 26 % 
decrease in GHG emissions alongside a 17.65 % reduction in PPP usage. 
Furthermore, the same study noted a significant 29.3 % reduction in 
CO2, CH4, and NO2 emissions per sprayer per year, highlighting the 
potential of smart technologies to mitigate environmental impact in 
agricultural practices [78]. 

Empirical evidence supports these findings, with the Smart Orchard 
Spray Application within the IOF2020 initiative demonstrating a sub
stantial 22 % to 39 % reduction in GHG emissions. This achievement was 
facilitated by the adoption of precise, IoT-enabled smart sprayers that 
optimise PPP application, focusing treatment on specific zones to 
minimise unnecessary usage and thereby reduce emissions. This 
approach not only enhances environmental sustainability in orchard 
farming but also results in a 48 % reduction in spray drift, further 
contributing to the conservation of surrounding ecosystems and 
reducing the potential for environmental contamination (Smart Orchard 
Treatment - [168]; Smart Orchard Spray Application - [179]). 

Farm management information systems (FMIS) 

Table 6 below provides a detailed and quantified overview of the 
peer-reviewed papers and documents with empirical data from relevant 
EU projects associated with the FMIS DAT category, detailing the spe
cific benefits observed. These benefits include yield increase, fertiliser 
savings, pesticide savings, water savings, and savings in labour, fuel, and 
overall costs, as well as environmental benefits. 

Yield increase: FMIS has led to notable yield increases across 
various agricultural sectors by harnessing the power of IoT, data 

analytics, and precision agriculture techniques. Sapkota et al. [180], 
demonstrated how the application of the DSS Nutrient Expert® enabled 
farmers to implement site-specific nutrient management (SSNM) for 
wheat. This adoption resulted in a 14 % increase in yield and 9 % in
crease in biomass compared to conventional farming practices. Cui et al. 
[181] conducted field trials across China, utilising a decision-support 
program that resulted in an average yield increase of 10.8 % to 11.5 
% for major crops such as maize, rice, and wheat. Karydas et al. [182] 
further demonstrated the economic benefits of PreFer services in Greece, 
where 33 farmers experienced significant yield improvements up to 15 
% across 1864 hectares of rice, maize, cotton, and wheat cultivation. 

Empirical evidence from the IoF2020 EU-funded project has signif
icantly demonstrated the benefits of IoT-driven monitoring and preci
sion control across various agricultural domains. The "Fresh 
Table Grapes Chain" use case has shown a notable improvement in the 
quality and yield of organic table grapes, with a 10 % increase in grape 
size and a 5 % enhancement in sugar content (Fresh Table Grapes Chain– 
[183]). Similarly, the "Soya Protein Management" initiative capitalised 
on sensor-driven technologies and a DSS to enhance soybean protein 
quality by 5 % and increase overall yield by the same margin, thanks to 
precise irrigation management and tailored seed density applications. 

In the realm of potato production, the "Data-Driven Potato Produc
tion" initiative utilised IoT data analytics and advisory systems to 
facilitate a 10 % increase in product quality, thereby boosting yield 
through informed decision-making processes (Data-driven Potato 
Farming– [184]). The "Chain-Integrated Greenhouse Production" use 
case, which implemented IoT-based DSS and data amalgamation, ach
ieved a significant rise in crop harvested per square metre per year, 
ranging between 6.9 % and 8.3 %, specifically in greenhouse tomato 
cultivation (Chain Integrated Greenhouse Production - [185]). 

Furthermore, the "Automated Olive Chain’’ demonstrated how a 
comprehensive IoT infrastructure could effectively monitor and adjust 
irrigation and fertilisation, culminating in a 10 % increase in yield per 
hectare (Automated Olive Chain - [186]). The AREAS (Agriculture 
Remote Aerial Sensing) project, leveraging remote sensing and machine 
learning, provided timely decision-making data that led to a 10 % yield 
increase (AREAS - [187]). Lastly, TeamDev’s Agricolus DSS, a cloud 
application designed for precision agriculture, utilised NDVI analysis to 
predict the occurrence and spread of pests, thereby aiding in quick 
disease management and potentially safeguarding yields [188]. 

Fertiliser savings: Integrating FMIS into agricultural practices has 
led to significant fertiliser savings, demonstrating the power of tech
nology in enhancing resource use efficiency and sustainability. The 
research conducted by Cui et al. [181] across China’s major 
agro-ecological zones employed a robust decision-support program, 
which resulted in nitrogen application reductions by 14.7 % to 18.1 %. 
Gallardo et al. [189] explored the FERTIRRIGERE V2.11 DSS for opti
mising fertigation management in drip-irrigated tomatoes in Italy, 
achieving a 46 % average reduction in nitrogen application while 
maintaining production and quality standards. Li et al. [190] reported a 
40 % decrease in chemical fertiliser use through a systematic 
water-saving management system based on the IoT, and Cheng et al. 
[191] introduced a surrogate model-assisted multiobjective algorithmic 
framework for precision agriculture, demonstrating a 37 % reduction in 
nitrogen application. These improvements not only contribute to cost 
reduction but also align with environmentally sustainable practices. 

Empirical evidence from various initiatives underscores the impact 
of FMIS on fertiliser savings. The "Fresh Table Grapes Chain" within the 
IoF2020 EU-funded project demonstrated a reduction in fertiliser usage 
by 15 % per kilogram of grapes annually, illustrating the system’s 
effectiveness in promoting resource efficiency and eco-friendly agri
cultural practices (Fresh Table Grapes Chain - [183]). Similarly, the 
"Soya Protein Management" initiative realised a substantial 10 % 
decrease in fertiliser use through the implementation of advanced 
sensor-based technologies and precision farming practices. This reduc
tion signifies a notable advancement towards sustainable agriculture, 

Table 6 
Quantitative Benefits of FMIS DAT Category from Peer-Reviewed Papers and EU 
Projects.  

Farm Management Information Systems (FMIS)  

Peer-reviewed 
papers 

Documents with 
empirical data 
from relevant 
EU project 

Total Number related to FMIS 14 13 

Economic Benefits N◦ % Range N◦ % Range 

Yield Increase 3 9–14 % 6 5–10 % 
Fertiliser savings 4 14.7–46 

% 
8 5–70 % 

Pesticide savings 4 20–61 % 6 5–15 % 
Water savings 8 10–50 % 11 4.3–60 % 
Labour/Fuel/Cost savings 1  10  
Labour savings  –  10–15 % 
Cost savings  20 %  5–20 % 
Environmental Benefits 1  4  
Input factors & Energy savings  20–30 %  – 
Reduction in energy consumption  –  10–15 % 
Energy efficiency improvement  –  2.7–4.8 

% 
Reduction in water contamination  –  5.3 % 
Reduction in carbon footprint  –  15 % 
Reduction in environmental impacts & 

Disease risk  
–  20 %  
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facilitated by informed decision-making based on sensor data (Soya 
Protein Management - [192]). 

Furthermore, the "Big Wine Optimization" project achieved signifi
cant fertiliser cost savings of 15 %, translating to 13€ per hectare. This 
initiative leveraged data analytics to optimise soil fertility and vine 
health, thereby streamlining fertiliser applications and promoting cost 
efficiency alongside sustainable viticulture practices (Big Wine Opti
misation - [193]). In the "Data-Driven Potato Production" use case of the 
IoF2020 project, the integration of IoT technology and satellite data 
resulted in fertiliser cost savings ranging from 5 % to 15 %, alongside a 
remarkable 15 % improvement in NUE. This optimisation of resource 
allocation underscores the benefits of precise farming practices (Data-
driven Potato Farming - [184]). The "Automated Olive Chain" utilised 
IoT-based monitoring and tailored recommendations to achieve a sig
nificant 10 % decrease in fertiliser use. This approach guided farmers in 
precise and efficient fertiliser application, enhancing sustainability and 
reducing costs (Automated Olive Chain - [186]). GAIA InFarm, powered 
by GAIAtrons IoT devices, offers a holistic smart farming solution that 
significantly cuts fertiliser usage by 50–70 %, supporting small farmers 
in optimising farming practices for better yields and environmental 
conservation (GAIA InFarm - [69]). 

Lastly, the Agricolus DSS developed by TeamDev provides a cloud- 
based precision farming system that aids farmers and agronomists in 
reducing over-fertilisation by 12–22 %, showcasing the application’s 
utility in enhancing agronomic decisions [188]. The EU’s Horizon 2020 
program, IoF2020, facilitated the adoption of smart solutions among 
potato farmers in Poland, Cyprus, and Ukraine. These solutions, span
ning irrigation, pest management, and fertilisation, make strategic use of 
telemetry IoT stations, satellite data, and tailored scientific models 
based on regional geographical characteristics. The GAIA sense smart 
farming solution drives data-driven potato predictions, integrating 
advanced technologies like IoT, Big Data, Earth Observation, 
context-based decision support, and machine learning.The GAIA sense 
solution is enhanced with FIWARE-powered data exchange mechanisms, 
promoting interoperability and openness between systems. The impact 
of this technology includes a 15 % improvement in NUE (Data-driven 
Potato Production - [194]) 

Pesticide savings: Research and empirical evidence have high
lighted the effectiveness of these technologies in optimising PPP appli
cation, leading to significant savings and environmental benefits. Ørum 
et al. [70] emphasised the economic efficiency of utilising low-dose 
herbicides, with potential cost reductions ranging from 20 % to 50 %. 
Li et al. [190] observed a 61.67 % decrease in PPP use in strawberry 
cultivation with a systematic water-saving management system based on 
the IoT, which also resulted in a 32.48 % reduction in PPP costs. Román 
et al. [125] reported about 25 % in PPP savings from precise, map-based 
variable-dose treatments in vineyards, showcasing the advantages of 
DSS in disease management. 

Crop Protection Online (CPO), a DSS described by Kudsk et al. [195], 
integrates decision algorithms and a herbicide dose model to optimise 
herbicide choice and dosage, achieving substantial herbicide reductions 
(about 60 % measured as the Treatment Frequency Index (TFI)) in spring 
barley through field experiments in Denmark. This demonstrates that 
decision support can significantly contribute to sustainable weed 
management. 

Empirical evidence from the IoF2020 EU-funded project further 
underscores the impact of FMIS. The "Fresh Table Grapes Chain" use case 
illustrated a 6 % decrease in PPP application per kilogram of grapes 
annually, leveraging innovative IoT technologies for sustainable pest 
management (Fresh Table Grapes Chain - [183]). The "Digital Ecosystem 
Utilisation" use case utilised sensor-based data and predictive analytics 
to monitor environmental conditions correlated with pest occurrence, 
leading to a significant 5 % to 10 % decrease in the usage of PPPs (Digital 
Ecosystem Utilisation - [196]). The "Big Wine Optimisation" initiative 
realised a substantial 15 % reduction in PPP costs, equating to savings of 
120€ per hectare by leveraging predictive analytics (Big Wine 

Optimisation - [193]). The "Data-Driven Potato Production" use case 
effectively lowered PPP costs by 10 % up to 15 %, showcasing efficient 
pest management strategies (Data-driven Potato Farming - [184]). 
Employing weather forecasts and fertigation models within the "Chai
n-Integrated Greenhouse Production" use case under the IOF2020 
project resulted in a 5.3 % decrease in PPP use, fostering environmen
tally conscious practices (Chain Integrated Greenhouse Production - 
[185]). The Horizon 2020 program’s support for smart solutions in 
potato farming has facilitated a 15 % reduction in PPP consumption by 
integrating telemetric IoT stations, satellite data, and scientific models 
(Data-driven Potato Production - [194]). 

Water savings: Research has demonstrated the impact of these 
systems on water conservation. The integration of IoT for water-saving 
management in strawberry cultivation reported by Li et al. [190] 
resulted in a 128 % improvement in water use efficiency. Tsirogiannis 
et al. [197] showed that a participatory DSS for irrigation management 
in wine grapevines led to improved crop water productivity (WPC) by 
20–44 %. Mirás-Avalos et al. [198] introduced the Irrigation-Advisor for 
vegetable crops, achieving a 42.1 % reduction in water use. Fotia et al. 
[199] indicated water savings of up to 13 % in olive cultivation, and 
Cayuela et al. [200] demonstrated how FMIS could reduce water use by 
20 % in oranges and tomatoes with controlled deficit irrigation strate
gies. Cheng et al. [191] reported a 44 % reduction in water consumption 
through precision agriculture management. Buono et al. [201] found 
that a DSS for kiwifruit farming saved 20–25 % of water, and Tamirat 
and Pedersen [202] highlighted water-saving benefits ranging from 10 
% to 50 % in orchards. 

Empirical evidence from the IoF2020 EU-funded project further 
supports these findings. The "Fresh Table Grapes Chain" use case ach
ieved a 20 % reduction in irrigation water usage annually by employing 
IoT-enabled precision control (Fresh Table Grapes Chain - [183]). The 
"Digital Ecosystem Utilisation" use case optimised irrigation schedules 
through sensor data, leading to a 5 % to 10 % reduction in water con
sumption (Digital Ecosystem Utilisation - [196]). The "Soya Protein 
Management" initiative reduced irrigation costs by 10 % (Soya Protein 
Management - [192]), while the "Big Wine Optimisation" project saw a 
10 % reduction in water consumption (Big Wine Optimisation - [193]). 
The "Data-Driven Potato Production" use case accomplished a 25 % 
reduction in water consumption (Data-driven Potato Farming - [184]), 
and the "Chain-Integrated Greenhouse Production" use case curtailed 
water usage by 4.3 % to 5.6 % (Chain Integrated Greenhouse Production 
- [185]). The "Automated Olive Chain" facilitated a 15 % reduction in 
water consumption through intelligent water management (Automated 
Olive Chain - [186]). GAIA InFarm, with its IoT-driven solution, slashes 
irrigation water usage by up to 25 % (GAIA InFarm - [69]). The FIGARO 
project estimates that its DSS can save 20–60 % of irrigation water 
([203].), and SMARTAGRIFOOD2′s irrigation advice application helps 
farmers reduce irrigation costs by up to 30 % [204]. Lastly, the Agricolus 
DSS supports decisions leading to a 20 % reduction in water stress for 
crops [188]. 

Labour/Fuel/Cost savings: FMIS, including DSS and QMS, have 
demonstrated considerable benefits in terms of labour, fuel, and cost 
savings across the agricultural sector. These systems optimise farm op
erations, leading to enhanced productivity and efficiency while signifi
cantly reducing operational costs. Karydas et al. [182] showcased the 
economic benefits of PreFer, an FMIS offering site-specific prescription 
maps for fertilisation. Farmers utilising PreFer reported yield increases 
up to 15 % and input cost reductions up to 20 %, highlighting the sys
tem’s effectiveness in simplifying fertilisation planning and application 
processes. 

Empirical evidence further corroborates the advantages of FMIS and 
related technologies. The "Fresh Table Grapes Chain" within the IoF2020 
EU-funded project optimized operations, leading to a 15 % reduction in 
labour hours per kilogram of grapes harvested annually and a 20 % 
decrease in irrigation costs per year (Fresh Table Grapes Chain - [183]). 
The "Digital Ecosystem Utilisation" use case leveraged IoT devices and 
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data analytics to streamline farm management practices, reducing the 
need for physical field visits by 20 % and achieving a 10 % cost reduc
tion per kilogram input (Digital Ecosystem Utilisation - [196]; Digital 
Ecosystem Utilisation - [205]).In soybean cultivation, the "Soya Protein 
Management" initiative employed advanced sensor technologies and a 
tailored DSS, resulting in a 5 % reduction in production costs and work 
time (Soya Protein Management - [192]). The "Big Wine Optimisation" 
use case utilised tractor-mounted camera systems and multispectral 
imagery to achieve a 5 % reduction in treatment frequency, indicating 
significant labour savings (Big Wine Optimisation - [193]). 

Furthermore, the "Data-Driven Potato Production" use case demon
strated reductions in irrigation costs by 5 % to 25 % and total inputs 
costs by 18.6 %, highlighting the efficiency of IoT stations and satellite 
information in potato cultivation (Data-driven Potato Farming - [184]; 
Data-driven Potato Production - [194]). The "Chain-Integrated Green
house Production" project achieved a 5.2 % reduction in crop cultivation 
expenses through innovative IoT technologies and robust data analysis 
(Chain Integrated Greenhouse Production - [185]).The "Automated 
Olive Chain" optimised processes, reducing labor time by 10 % per ki
logram produced and production costs by 15 %, demonstrating the 
impact of IoT-powered analytics and streamlined automation on oper
ational efficiency (Automated Olive Chain - [186]). TeamDev’s devel
opment of the Agricolus DSS aims to support farmers and agronomists in 
making informed decisions, leading to an increase in farm productivity 
by 5–10 % and cost savings of 504€ per hectare, potentially saving farms 
an average of 10,000€ [188]. 

Environmental Benefits: FMIS, including DSS and QMS, present 
direct environmental benefits, notably in reducing GHG emissions and 
enhancing sustainability in agricultural practices. Barradas et al. [206] 
discussed the DSS-FS fertigation simulator, designed to optimise irri
gation and fertigation systems, increasing their environmental sustain
ability. This system, as reported by users, boosts production significantly 
while saving 20–30 % in input factors and energy, illustrating the pos
itive impact of FMIS on environmental sustainability. 

Empirical evidence further supports the environmental benefits of 
FMIS. The Big Wine Optimisation initiative, by installing electricity 
metres and optimising power usage within cellars and wine production 
areas, achieved a 10 % reduction in energy consumption. This was 
realised through meticulous monitoring, control, and optimisation of 
resource consumption, enhancing operational efficiency while reducing 
environmental impact (Big Wine Optimisation - [193]). The 
Chain-Integrated Greenhouse Production use case within the IOF2020 
project improved energy efficiency by 2.7 % to 4.8 % and reduced water 
contamination by 5.3 %, mitigating adverse ecological effects associated 
with intensive greenhouse farming (Chain Integrated Greenhouse Pro
duction - [185]). The Automated Olive Chain, by integrating IoT tech
nologies, managed energy consumption across operations, resulting in a 
15 % reduction. This system provided farmers with actionable insights, 
enabling them to optimise energy usage and contribute to a more sus
tainable farming environment (Automated Olive Chain - [186]). The 
Agricolus DSS, developed by TeamDev, offers a cloud application to 
support farmers and agronomists in making informed agronomic de
cisions. This project claims to mitigate the carbon footprint by 15 %, 
thereby reducing environmental impacts and disease risk by 20 % for 
issues like Olive Fruit Fly and Phytophthora [188]. 

Discussion 

Recording and mapping technologies (RMT) (inc. monitoring systems, 
real-time location systems (RTLS)) 

In this category, 34 articles were identified, of which 27 were peer- 
reviewed articles, and 7 were attributed to European projects. This 
category of DATs is of fundamental relevance in the context of Precision 
Agriculture, and the quantity of data obtained demonstrates it. Among 
the numerous peer-reviewed articles, the most evident benefits were 

attributed to savings and increased efficiency in fertiliser use, with the 
identification of 8 valid studies. Among these, Andújar et al. [64] ach
ieved the most remarkable result, managing an 80 % reduction in fer
tiliser doses applied in a vineyard through the use of aerial imagery and 
ground detection, optimising input usage without compromising crop 
yield. 

Additional benefits of RMT were found in further studies. Squeri 
et al. [60] achieved a 40 % yield increase in viticulture, thanks to 
vegetative indices based on prescription maps obtained from satellite 
images. Based on data from recordings and mappings, Laursen et al. [71] 
introduced a weed quantification algorithm for maize that significantly 
reduced herbicide use by 65 %, with positive environmental and eco
nomic impacts. The use of recording systems was also studied by Millan 
et al. [79], managing to use soil moisture sensors to reduce water usage 
by 24 %. Finally, Medel-Jiménez et al. [35] highlighted the potential of 
crop sensors in precision agriculture to reduce global warming by 
− 17.04 %, compared to a conventional agricultural management 
scheme. 

Regarding European projects relevant to the investigation, once 
again, the most significant data is attributed to fertiliser savings. In 
particular, the ’GaiaInFarm’ project under HORIZON 2020, using RMT 
and an FMIS application for fruit cultivation, was able to achieve a 
decrease in fertiliser usage between 50 % and 70 %. It should be noted 
that the project utilised sensing stations, app technology, and Decision 
Support Systems (DSS) to enhance monitoring and decision-making 
processes. Based on what has emerged, it can be stated that the proper 
use of these technologies is capable of bringing concrete benefits, such as 
the use of a lower quantity of fertilisers. Furthermore, the widespread 
availability of images and data (both satellite and non-satellite), if 
correctly interpreted, translates into an economic benefit that contrib
utes to higher farmer’s profits. 

Guidance and controlled traffic farming (CTF) technologies 

Similarly to the previous category, this category has also provided a 
significant number of articles, totalling 20, while the number of projects 
was the lowest among all the technologies analysed, only 2. The most 
significant results in terms of benefits were found in the field of fertiliser 
and fuel use and savings. The study that stands out the most for the 
quality of the results achieved is the one conducted by Tullberg in 2014. 
The study stated that CTF systems can improve soil biological activity 
due to reduced compaction. This also leads to an improvement in Ni
trogen Use Efficiency (NUE) between 40 % and 80 %, resulting in a 
lower demand for fertilisers [92]. The study also attributed to CTF a 
reduction in fuel consumption between 40 % and 70 % during all soil 
cultivation operations, making this technology less impactful in terms of 
consumption and sustainability [92]. 

Additional benefits were found in the study conducted by Hefner 
et al. [87] regarding the increase in yields of white cabbage, potatoes, 
and beetroots, which reached increases of 27 %, 70 %, and 42 %, 
respectively, thanks to the use of CTF. The benefits of this technology 
were also highlighted in the study by Hussein et al. [88], which reported 
a 175 % increase in NUE and a 65 % increase in rainfall-use efficiency 
due to reduced soil compaction. The use of CTF has also demonstrated 
the ability to reduce herbicide requirements by 25 % [92] and decrease 
soil emissions of nitrous oxide (21–45 %), as demonstrated by Gasso 
et al. [91]. Regarding European projects, the best result was achieved in 
terms of drift reduction. Specifically, the "Wingssprayer" project was 
able to achieve a 99.8 % reduction in drift, minimising the risk of 
chemical dispersal into non-target areas (Wingssprayer - [94]). 

In light of the analysis, it is evident that crop management through 
CTF technologies is crucial to reduce the amount of fertilisers used and 
optimise the quality of operations performed. Furthermore, what has 
been highlighted is indispensable within a cropping system that can be 
defined as technological and sustainable. Therefore, these technologies 
must be further developed and adopted on a large scale. 
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Reacting or variable rate technologies (VRT) 

This category has encountered the highest number of relevant peer- 
reviewed articles (52), while only 3 European projects have addressed 
the topic. Certainly, within a cropping system aiming to be efficient, 
sustainable, and technologically accurate, this technology is vital to 
reduce any kind of waste, whether it be inputs or economic resources. 
This technology has also proven to generate the most significant envi
ronmental benefit, precisely due to its ability to reduce the quantity of 
PPPs used during crop operations. Thanks to the wealth of data ob
tained, it has been possible to attribute the main benefits to two cate
gories, namely PPP savings and water savings. Regarding PPP use, two 
studies have proven highly valid, with encouraging results: the study 
conducted by Tewari et al. [136] led to the creation of a system capable 
of achieving a 50 % savings in herbicide use, with a weeding efficiency 
of 90 %. Similarly, Zhu et al.’s [80] study allowed for a reduction in 
pesticide volume between 60 % and 77.6 %. The best water management 
was found in the study conducted by Modina et al. [141], where the use 
of a Variable Rate Technology (VRT) irrigation system allowed for 
savings of 20 % and 50 % respectively for a vineyard and a pear orchard. 
In addition to these, other studies have highlighted the benefits of 
variable-rate technologies. The use of variable-rate fertilisation allowed 
Bergerman et al. [108] to record a 33 % increase in wheat yield 
compared to conventional fertilisation. 

Regarding fertiliser consumption, Van Evert et al. [44] were able to 
achieve a significant reduction in potassium-based fertiliser of 31 % and 
a reduction in phosphate consumption of 59 %. All these benefits cannot 
be classified solely as fertiliser savings but must also be considered as 
economic savings and more sustainable agricultural management. 
Finally, although the number of European projects in this field was not 
satisfactory, the "Life-F3″ project, using a high-end Fede sprayer tested in 
an apple field, resulted in a 29 % reduction in spraying hours, a 25 % 
cost reduction, and a 29 % fuel saving (which translates into a decrease 
in greenhouse gas emissions by 29 %). The cost-benefit analysis for this 
situation indicated financial savings of around €760 per hectare per year 
[78]. In light of the knowledge gained, it can be said that the wise 
application of VRT has the potential to produce significant environ
mental benefits. The amount of PPPs saved through these operations 
should not be underestimated, as it contributes significantly to both 
pollution mitigation and economic savings. This underlines the impor
tance of adopting precision farming practices, not only for environ
mental sustainability but also for the economic efficiency they bring to 
farming operations. 

Robotic systems or smart machines (RSSM) (inc. artificial intelligence 
(AI)) 

Within this category, it was possible to identify 23 peer-reviewed 
articles and 3 European projects. The results from various research 
studies and European projects focusing on RSSM have demonstrated a 
significant positive impact, primarily emphasising savings in PPPs and 
water. The experiment conducted by Oberti et al. [163], using the 
"CROPS" robot, led to a reduction in vineyard PPP usage between 65 % 
and 85 %. A slightly higher result is reported by Rose & Bhattacharya 
[158], achieving a 90 % reduction in fungicide usage with autonomous 
UVC disease treatment robots in the soft fruit sector. 

Regarding water conservation, Dobbs et al. [172] explored 
sensor-based automatic irrigation, achieving water savings of up to 75 
%. Their study highlighted the effectiveness of using automatic rain 
sensors, SWS, and ET compared to traditional automatic timer systems. 
Furthermore, the research and projects developed have significantly 
contributed to reducing the required labour and have led to appreciable 
environmental benefits. Lopez-Castro et al. [176] developed a Vineyard 
Terrestrial Robot, resulting in a 97 % reduction in labour required for 
fumigation processes. 

From the point of view of yield increase, not many studies have been 

found, apart from the one carried out by Nagasaki et al. [157] who found 
a 50 % increase in yield by using a robotic harvesting system in an or
chard. Additionally, the Smart Orchard Spray application within the 
IOF2020 initiative demonstrated a substantial 22 % to 39 % reduction in 
GHG emissions (Smart Orchard Spray Application - [179]). In summary, 
the analysis of the RSSM category reveals a positive impact in agricul
tural sectors. The data on which the study is based highlights significant 
savings both in PPPs and in water usage. The highlighted examples 
underscore the importance of such technologies. 

Farm management information systems (FMIS) 

The conducted research has yielded a substantial amount of data, 
both concerning peer-reviewed articles (14) and, especially, European 
projects (13). The lower presence of peer-reviewed articles might be 
attributed to the fact that many companies and farmers do not consider 
this technology crucial for better crop management, likely because they 
prefer to invest in technologies with a more significant impact on their 
operations, such as VRT or guidance systems. As for the analysis of data 
obtained from European projects, it is noteworthy that data from pro
jects related to FMIS rank first. This is evidently due to the fact that these 
technologies intersect with the realms of data management and data 
reception, elements that currently find ample space within startups and 
new computing projects. 

Among the many studies and projects analysed, those that have 
sparked the most interest cover a range of topics, from fertiliser savings 
to improved work efficiency. For instance, the DSS explored by Gallardo 
et al. [189] was able to reduce nitrogen application by 46 % through a 
fertigation system. In the same context, the "GAIA InFarm" project 
enabled a reduction in fertiliser use by 50 % to 70 %, supporting small 
farmers in optimising farming practices for better yields and environ
mental conservation. From a water management perspective, Tsir
ogiannis et al. [197] demonstrated that a participatory DSS for irrigation 
management in wine grapevines led to improved crop water produc
tivity (WPC) by 20–44 %. 

Regarding the savings of PPPs, Li et al. [190] observed a 61.67 % 
decrease in PPP use in strawberry cultivation with a systematic 
water-saving management system based on the IoT, which also resulted 
in a 32.48 % reduction in PPP costs. In economic terms, European 
projects have shown the most interest in study. The "Big Wine Optimi
sation" initiative achieved a substantial 15 % reduction in PPP costs, 
equivalent to savings of €120 per hectare, leveraging predictive ana
lytics (Big Wine Optimisation - [193]). Similarly, the study conducted by 
Karydas et al. [182] demonstrated the economic benefits of PreFer, an 
FMIS offering site-specific prescription maps for fertilisation. Farmers 
utilising PreFer reported yield increases up to 15 % and input cost re
ductions up to 20 %, highlighting the system’s effectiveness in simpli
fying fertilisation planning and application processes. 

TeamDev’s development of the Agricolus DSS aims to support 
farmers and agronomists in making informed decisions, leading to an 
increase in farm productivity by 5–10 % and cost savings of €504 per 
hectare, potentially saving farms an average of €10,000 [188]. The same 
Agricolus DSS project also claims to be able to mitigate the carbon 
footprint by 15 %, demonstrating itself as a valuable environmental 
resource. The highlighted studies and projects mainly focus on the 
theme of fertiliser savings and all the related environmental and eco
nomic benefits. 

In conclusion, the research has provided significant contributions 
through peer-reviewed articles and European projects. The latter addi
tionally underscore an increasing significance placed on data manage
ment and acquisition within the framework of contemporary computing 
environments. This growing emphasis reflects a recognition of the 
pivotal role that effective data handling plays in the success and 
advancement of technological initiatives. As these projects unfold, they 
not only contribute to specific objectives but also contribute to the 
broader understanding of the pivotal role data management holds in 
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driving innovation and efficiency in diverse sectors. This trend aligns 
with the evolving landscape of technological advancements, where 
informed and strategic data usage is increasingly recognised as a key 
determinant of success in various fields. 

Conclusion 

This paper presented an integrative literature review on the eco
nomic and environmental impacts of DATs in crop production, empha
sising their transformative potential across various categories, including 
RMT, CTF, VRT, RSSM, and FMIS. The analysis, grounded in peer- 
reviewed papers and documents with empirical data from relevant EU 
projects, demonstrates that DATs offer substantial economic benefits, 
such as yield increases, cost savings in fertilisers, pesticides, water, la
bour, and fuel, alongside notable environmental advantages by mini
mising the use of chemical inputs and optimising resource utilisation. 

Economically, DATs have demonstrated significant benefits across 
various agricultural practices, directly impacting yield outputs and input 
cost savings. Specifically, RMT has shown a potential yield increase 
ranging from 9.7 % to 62.6 % across different crops, highlighting their 
effectiveness in enhancing crop production efficiency. Furthermore, 
advancements in CTF technologies have been linked to yield increases of 
up to 70 %, demonstrating the positive impact of optimised field oper
ations on crop productivity. In terms of input cost savings, VRT has led 
to substantial reductions in the use of fertilisers and pesticides, with 
studies reporting fertiliser savings of up to 59.6 % and pesticide savings 
ranging between 8 % and 80 %. These reductions not only lower the 
operational costs for farmers but also contribute to more targeted and 
efficient resource use. Additionally, RSSM have facilitated labour and 
fuel savings, with autonomous systems achieving a reduction in labour 
time by up to 97 % in specific tasks and fuel savings between 22.15 % 
and 49.14 % through optimised machinery use. The implementation of 
FMIS has further enhanced economic efficiency by enabling better 
decision-making and resource allocation, leading to a reduction in water 
consumption by up to 60 % and a decrease in fertiliser use by 50–70 % in 
various case studies. These systems support the strategic management of 
agricultural inputs, optimising the application of water, fertilisers, and 
pesticides, thereby reducing excess use and minimising costs. 

From an environmental perspective, the analysis showcases DATs’ 
capacity to markedly improve resource use efficiency and reduce the 
ecological footprint of farming practices. Specifically, the deployment of 
RMT and VRT has been associated with substantial reductions in pesti
cide usage, ranging from 20 % to 50 %, and fertiliser savings up to 80 %, 
mitigating soil and water pollution. CTF technologies contribute to soil 
structure preservation and reduce greenhouse gas emissions by opti
mising field operations and minimising unnecessary soil compaction. 
Furthermore, the adoption of RSSM and FMIS emphasises precision in 
application and resource management, leading to notable decreases in 
water usage by up to 40 % and enhancing the sustainability of water 
resources. 

The review has established that the economic and environmental 
benefits of DATs are closely linked, with gains in efficiency directly 
contributing to reduced environmental impacts. These benefits illustrate 
the pivotal role of DATs in facilitating a transition toward agricultural 
systems that are both more sustainable and economically viable. How
ever, the maximisation of these benefits necessitates overcoming bar
riers to adoption, such as the need for improved integration across DAT 
platforms, the development of user-friendly interfaces for a diverse 
range of users, and the creation of supportive policy environments. To 
address these needs, future research should focus on developing holistic 
and interoperable DAT solutions that can seamlessly integrate into 
various agricultural practices. Additionally, creating policies that sup
port the adoption and scaling of these technologies will be crucial for 
their widespread implementation. 

In summarising the main objectives and findings, it is clear that DATs 
offer valuable opportunities to enhance both the sustainability and 

efficiency of crop production, providing tangible economic benefits 
alongside significant contributions to environmental conservation. As 
the agricultural sector evolves to meet the challenges of the 21st cen
tury, the strategic deployment of DATs will be essential in securing food 
security, economic resilience, and environmental sustainability. 
Importantly, the deployment of DATs aligns with and is essential for 
achieving the ambitious objectives of the European Green Deal and the 
Common Agricultural Policy, which seek to transform the EU into a fair 
and prosperous society with a modern, resource-efficient, and compet
itive economy. This review calls for continued innovation and the 
broader adoption of DATs, urging stakeholders to embrace digital ag
riculture’s potential in transforming farming into a more efficient, sus
tainable, and productive sector. 
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[42] M.C. Annosi, R.M.O. Ráez, F.P. Appio, T. Del Giudice, An integrative review of 
innovations in the agricultural sector: the roles of agency, structure, and their 
dynamic interplay, Technol. Forecast. Soc. Change 185 (2022) 122035. 

[43] D. Tranfield, D. Denyer, P. Smart, Towards a methodology for developing 
evidence-informed management knowledge by means of systematic review, Br. J. 
Manag. 14 (2003) 207–222. 

[44] F.K. Van Evert, D. Gaitán-Cremaschi, S. Fountas, C. Kempenaar, Can precision 
agriculture increase the profitability and sustainability of the production of 
potatoes and olives? Sustainability. 9 (10) (2017) 1863. 

[45] E.F.I. Raj, M. Appadurai, K. Athiappan, Precision farming in modern agriculture. 
Smart Agriculture Automation Using Advanced Technologies: Data Analytics and 
Machine Learning, Cloud Architecture, Automation and IoT, Springer Singapore, 
Singapore, 2022, pp. 61–87. 

[46] M.A. Hamza, W.K. Anderson, Soil compaction in cropping systems: a review of 
the nature, causes and possible solutions, Soil Tillage Res. 82 (2) (2005) 121–145. 

[47] T. Chamen, Controlled traffic farming–from worldwide research to adoption in 
Europe and its future prospects, Acta Technol. Agric. 18 (3) (2015) 64–73. 

[48] S. Fabiani, S. Vanino, R. Napoli, A. Zajíček, R. Duffková, E. Evangelou, P. Nino, 
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economic thresholds for site-specific weed control using manual weed counts and 
sensor technology: an example based on three winter wheat trials, Pest Manag. 
Sci. 70 (2) (2014) 200–211. 

[55] IOF2020. (n.d.). Added Value Weeding Data. Retrieved from https://www.iof202 
0.eu/use-case-catalogue/vegetables/added-value-weeding-data. 

[56] IOF2020. (n.d.). Precision Crop Management. Retrieved from https://www.iof 
2020.eu/use-case-catalogue/arable/precision-crop-management. 

[57] M.A. Munnaf, G. Haesaert, A.M. Mouazen, Site-specific seeding for maize 
production using management zone maps delineated with multi-sensors data 
fusion scheme, Soil Tillage Res. 220 (2022) 105377. 

[58] K. Astanakulov, K. Shovazov, A. Borotov, A. Turdibekov, S. Ibrokhimov, Wheat 
harvesting by combine with GPS receiver and grain sensor, in: E3S Web of 
Conferences 227, EDP Sciences, 2021, p. 07001. 

[59] IOF2020. (n.d.) Within Field Management Zoning Baltics. Retrieved from https:// 
www.iof2020.eu/use-case-catalogue/arable/within-field-management-zonin 
g-baltics. 

[60] C. Squeri, I. Diti, I.P. Rodschinka, S. Poni, P. Dosso, C. Scotti, M. Gatti, The high- 
yielding lambrusco (Vitis vinifera l.) grapevine district can benefit from precision 
viticulture, Am. J. Enol. Vitic. 72 (3) (2021) 267–278. 

[61] A. Haghverdi, B.G. Leib, R.A. Washington-Allen, P.D. Ayers, M.J. Buschermohle, 
Perspectives on delineating management zones for variable rate irrigation, 
Comput. Electron. Agric. 117 (2015) 154–167. 

[62] B. Basso, D. Cammarano, C. Fiorentino, J.T. Ritchie, Wheat yield response to 
spatially variable nitrogen fertilizer in Mediterranean environment, Eur. J. Agron. 
51 (2013) 65–70. 

[63] F. Argento, T. Anken, F. Abt, E. Vogelsanger, A. Walter, F. Liebisch, Site-specific 
nitrogen management in winter wheat supported by low-altitude remote sensing 
and soil data, Precis. Agric. 22 (2021) 364–386. 

[64] D. Andújar, H. Moreno, J.M. Bengochea-Guevara, A. de Castro, A. Ribeiro, Aerial 
imagery or on-ground detection? An economic analysis for vineyard crops, 
Comput. Electron. Agric. 157 (2019) 351–358. 

[65] K.A. Vakilian, J. Massah, A farmer-assistant robot for nitrogen fertilizing 
management of greenhouse crops, Comput. Electron. Agric. 139 (2017) 153–163, 
15 June 2017. 

[66] A.F. Colaço, R.G. Bramley, Do crop sensors promote improved nitrogen 
management in grain crops? Field Crops Res. 218 (2018) 126–140. 

[67] A.F. Colaço, J.P. Molin, Variable rate fertilization in citrus: a long term study, 
Precis. Agric. 18 (2017) 169–191. 

[68] A. Guerrero, A.M. Mouazen, Evaluation of variable rate nitrogen fertilization 
scenarios in cereal crops from economic, environmental and technical 
perspective, Soil Tillage Res. 213 (2021) 105110. 

[69] Smart-AKIS. (n.d.) GAIA InFarm. Retrieved from https://smart-akis.com/ 
SFCPPortal/#/app-h/technologies?techid=21. 

[70] J.E. Ørum, P. Kudsk, P.K. Jensen, Economics of site-specific and variable-dose 
herbicide application, Precis. Agric. (2017) 93–110. 

G. Papadopoulos et al.                                                                                                                                                                                                                         

http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0046
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0046
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0176
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0176
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0176
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0075
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0075
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0119
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0119
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0119
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0031
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0031
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0031
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0111
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0111
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0111
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0196
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0196
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0026
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0026
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0026
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0095
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0095
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0110
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0110
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0193
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0193
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0193
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0124
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0124
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0125
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0125
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0004
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0004
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0004
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0160
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0160
http://refhub.elsevier.com/S2772-3755(24)00046-7/opt9hXDYvQzol
http://refhub.elsevier.com/S2772-3755(24)00046-7/opt9hXDYvQzol
https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0035
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0035
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0035
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0096
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0096
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0096
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0034
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0034
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0034
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0101
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0101
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0101
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0139
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0139
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0139
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0123
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0123
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0123
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0044
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0044
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0172
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0172
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0172
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0172
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0010
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0010
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0010
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0121
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0121
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0121
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0011
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0011
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0011
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0173
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0173
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0173
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0173
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0012
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0012
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0012
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0144
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0144
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0144
https://quantifarm.eu/
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0050
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0050
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0006
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0006
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0006
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0183
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0183
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0183
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0189
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0189
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0189
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0150
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0150
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0150
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0150
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0074
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0074
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0028
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0028
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0053
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0053
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0053
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0053
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0053
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0162
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0162
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0162
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0059
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0059
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0059
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0054
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0054
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0054
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0065
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0065
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0142
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0142
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0142
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0099
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0099
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0099
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0099
https://www.iof2020.eu/use-case-catalogue/vegetables/added-value-weeding-data
https://www.iof2020.eu/use-case-catalogue/vegetables/added-value-weeding-data
https://www.iof2020.eu/use-case-catalogue/arable/precision-crop-management
https://www.iof2020.eu/use-case-catalogue/arable/precision-crop-management
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0133
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0133
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0133
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0008
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0008
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0008
https://www.iof2020.eu/use-case-catalogue/arable/within-field-management-zoning-baltics
https://www.iof2020.eu/use-case-catalogue/arable/within-field-management-zoning-baltics
https://www.iof2020.eu/use-case-catalogue/arable/within-field-management-zoning-baltics
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0164
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0164
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0164
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0072
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0072
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0072
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0014
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0014
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0014
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0007
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0007
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0007
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0005
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0005
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0005
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0188
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0188
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0188
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0037
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0037
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0036
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0036
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0069
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0069
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0069
https://smart-akis.com/SFCPPortal/#/app-h/technologies?techid=21
https://smart-akis.com/SFCPPortal/#/app-h/technologies?techid=21
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0203
http://refhub.elsevier.com/S2772-3755(24)00046-7/sbref0203


Smart Agricultural Technology 8 (2024) 100441

17

[71] M.S. Laursen, R.N. Jørgensen, H.S. Midtiby, K. Jensen, M.P. Christiansen, T. 
M. Giselsson, P.K. Jensen, Dicotyledon weed quantification algorithm for 
selective herbicide application in maize crops, Sensors 16 (11) (2016) 1848. 

[72] T. Yan, H. Zhu, L. Sun, X. Wang, P. Ling, Investigation of an experimental laser 
sensor-guided spray control system for greenhouse variable-rate applications, 
Trans. ASABe 62 (4) (2019) 899–911. 

[73] F. Castaldi, F. Pelosi, S. Pascucci, R. Casa, Assessing the potential of images from 
unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize, 
Precis. Agric. 18 (2017) 76–94. 

[74] A. Gusev, E. Skvortsov, S. Volkova, The study of the impact of introduction of 
precision farming technologies on the main production and economic indicators 
at agriculture organizations, in: AIP Conference Proceedings 2661, AIP 
Publishing, 2022. 

[75] L. De Bortoli, S. Marsi, F. Marinello, S. Carrato, G. Ramponi, P. Gallina, Structure 
from Linear Motion (SfLM): an on-the-go canopy profiling system based on off- 
the-shelf RGB cameras for effective sprayers control, Agronomy 12 (6) (2022) 
1276. 

[76] V.K. Tewari, A.K. Chandel, B. Nare, S. Kumar, Sonar sensing predicated automatic 
spraying technology for orchards, Curr. Sci. 115 (6) (2018) 1115–1123. 

[77] Smart-AKIS. (n.d.) SDOP. Retrieved from https://smart-akis.com/SFCPPortal/ 
#/app-h/technologies?techid=20. 

[78] EIP-AGRI Focus Group, Sustainable Ways to Reduce Pesticides in Pome and Stone 
Fruit Production: Mini Paper 6: Innovative Approaches for A Sustainable Future 
Plant Protection, 2022. Retrieved from, https://ec.europa.eu/eip/agriculture/site 
s/default/files/minipaper_1_220908_finaldraft.pdf. 

[79] S. Millán, C. Campillo, J. Casadesús, J.M. Pérez-Rodríguez, M.H. Prieto, 
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