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This review paper delved into the economic and environmental benefits of Digital Agricultural Technological
Solutions (DATSs) in livestock farming systems. Synthesising data from 52 peer-reviewed papers it presents the
outcomes of a systematic literature review on livestock farming DATSs, conducted with the use of the PRISMA
methodology. The analysis highlighted the contribution of DATSs across three main livestock farming DATSs
categories: Automated Milking Systems (AMS), Feed and Live Weight Measurement technologies, and Health
Monitoring Systems. The results showed that AMS has the potential to boost cow productivity by up to 15 %
while also reducing energy consumption by 35 %. Feed and Live Weight Measurement technologies contribute
notably to sustainability and cost savings, with feed waste reductions of 75 % and feeding savings of 33 %. Health
Monitoring Systems are especially effective in improving herd health and productivity through early detection of
clinical issues, which directly enhances animal welfare and farm efficiency. Environmentally, AMS and health
monitoring tools play a vital role in reducing greenhouse gas emissions, with AMS lowering global warming
potential by up to 5.83 %. Overall, the findings of this review highlight the potentials of livestock DATSs towards
economic viability and environmental sustainability, suggesting that the wider adoption could offer substantial
benefits for the livestock farming sector. Up to now, DATSs have shown great potential in dairy cattle by
improving milk yield, quality, and animal health, with advancements such as AMS increasing productivity and
health monitoring systems enhancing early disease detection. In contrast, their application in sheep, goats, and
pigs is still in its early stages, mainly limited to basic health monitoring and feeding technologies, despite the
economic importance of these species, especially in the Mediterranean area, where most of the studies are
conducted.

an essential component of the global food supply chain, livestock
farming plays an important role in meeting this demand while also

1. Introduction

As livestock production systems evolve, the adoption of digital
agricultural technological solutions becomes increasingly vital. These
technologies enhance efficiency, optimise resource management, and
improve animal welfare, ensuring sustainable livestock production that
can effectively address the challenges of a growing global population
[32]. The need for the optimisation of livestock technologies arises from
the increased demand for meat and dairy products [2,13,46,65,84]. As
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contributing to economic stability.

Nevertheless, traditional livestock farming and production methods
are becoming increasingly unsustainable, as inefficiencies in production
and rising operational costs intersect with growing concerns about
environmental sustainability. These practices, which are often labour-
intensive [45], pose significant challenges to scalability and efficiency,
particularly as farmers struggle to adapt to modern demands.
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Furthermore, the high costs of inputs and fodder place substantial
pressure on profitability, leading to a gradual decline in traditional
livestock husbandry [59]. This issue is further compounded by market
fluctuations and the exploitation by middlemen, which create additional
barriers and undermine the viability of traditional farming systems [82].

Environmental challenges are becoming increasingly severe, with
climate change and prolonged droughts driving many pastoralists to
abandon traditional herding practices [63]. These shifts are further
compounded by ineffective range management, which undermines
ecological sustainability and complicates efforts to maintain livestock
populations while preserving natural resources [59]. The dairy sector
also plays a significant role in environmental degradation, contributing
to global greenhouse gas (GHG) emissions through methane from
enteric fermentation and nitrous oxide from manure management [48].
Climate change is another factor that could exacerbate welfare issues,
potentially affecting the performance and reproductive capacity of ru-
minants raised on pasture and to a lesser extent those raised intensively,
where mitigation strategies are more feasible [25]. Addressing these
interconnected risks demands the adoption of improved management
practices and modern technologies to mitigate climate change effects
and ensure sustainability [20,73].

Therefore, there is an increasing adoption of technologies in live-
stock production, commonly referred to as Precision Livestock Farming
(PLF), Smart Livestock Farming, Digital Livestock Farming, or more
broadly as Digital Agricultural Technological Solutions (DATSs), rep-
resenting a diverse set of approaches aimed at enhancing efficiency,
productivity, and sustainability in livestock operations. Livestock
DATSs, including big data analytics, sensors, geographic information
systems, unmanned aerial vehicles, and blockchain technologies, offer
innovative solutions to these challenges [7,27,85]. By enabling real-time
monitoring, automated decision-making, and precision management,
livestock DATSs can help reduce the environmental footprint of farming
while improving productivity and profitability [57]. In addition, they
enable comprehensive individual monitoring throughout the supply
chain, facilitating precise feeding, health management, and early
detection of inefficiencies, which enhance production efficiency,
resource management, and profitability while reducing the environ-
mental footprint of livestock farming. Through the use of mathematical,
statistical, and machine learning models, DATSs support the
decision-making in livestock farming allowing breeders to identify
behavioural patterns, minimise errors, and reduce losses [83]. The
mechanisation and scaling of livestock operations further enhance pro-
duction efficiency while lowering costs, making food products more
accessible, especially for economically vulnerable populations [15].
Moreover, DATSs promote sustainable livestock management practices
by enabling precise feeding, health monitoring, and timely detection of
inefficiencies, ultimately contributing to reducing the environmental
footprint of livestock farming while improving overall productivity and
profitability.

Many studies, such as this by Bretas et al. [22], have highlighted the
importance of DATSs, emphasising their impact on production effi-
ciency, particularly in milk production [30]. For example, studies on
Automatic Milking Systems (AMS) indicate that they reduce labour
costs, enhance animal welfare, and provide more flexible working and
leisure time for producers, thereby improving overall operational effi-
ciency and competitiveness [47,70,77]. Moreover, another study by
Banhazi et al. [8], highlighted that DATSs integration contributes to
sustainable farming practices by minimising waste and optimising feed
and water usage thus reducing the environmental footprint and sup-
porting the global sustainability goals. Additionally, their adoption can
lead to increased profitability through enhanced productivity and
reduced operational costs [8]. Therefore, as DATSs become more
accessible, they can drive economic development in rural areas by
improving farm viability [44].

The integration of digital technologies in livestock production is
closely aligned with global sustainability and food security goals,
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particularly under initiatives such as the European Green Deal and its
’Farm to Fork Strategy’ [33]. Such initiatives aim to revolutionise the
agricultural system by setting ambitious targets for reducing greenhouse
gas emissions, improving animal welfare, and promoting sustainable
farming practices by 2030. DATSs in livestock farming, such as precision
monitoring, automated feeding systems, and advanced data analytics,
have the potential to play a pivotal role towards this transformation.
They offer a balanced approach to enhance productivity, reduce envi-
ronmental impacts and support animal welfare, while improving the
economic viability of farms. In addition, and apart from the economic
and environmental benefits, DATSs are in alignment with the ethical
framework of the Five Freedoms, ensuring humane treatment and
well-being of livestock which promotes both higher productivity and
ethical standards in livestock management [32].

Many studies, such as this by Bretas et al. [22], have highlighted the
importance of DATSs, emphasising their impact on production effi-
ciency, particularly in milk production [30]. For example, studies on
AMS indicate that they reduce labour costs, enhance animal welfare, and
provide more flexible working and leisure time for producers, thereby
improving overall operational efficiency and competitiveness [47,70,
771. Moreover, another study by Banhazi et al. [8], highlighted that
DATS:s integration contributes to sustainable farming practices by min-
imising waste and optimising feed and water usage thus reducing the
environmental footprint and supporting the global sustainability goals.
Additionally, their adoption can lead to increased profitability through
enhanced productivity and reduced operational costs [8]. Therefore, as
DATSs become more accessible, they can drive economic development
in rural areas by improving farm viability [44].

Despite significant technological advancements, the livestock sector,
particularly in developing regions, continues to face significant barriers
to fully integrate these solutions. This highlights a critical gap in the
literature, emphasising the need for a thorough examination of how
these technologies can enhance both the economic viability and envi-
ronmental sustainability of livestock systems. Addressing this challenge,
the EU-funded project QuantiFarm (QuantiFarm Project Website. URL:
https://quantifarm.eu/) focuses on evaluating the impact of DATSs and
actively promoting their integration to improve sustainability and
competitiveness. As part of QuantiFarm, this review paper presents the
outcomes of a systematic literature review on livestock DATSs, con-
ducted using the PRISMA methodology, to delve deep and explore their
key economic and environmental benefits.

2. Methodology
2.1. Categorisation of livestock DATSs

The application of DATSs is vital for addressing key challenges in
livestock management, including animal health, welfare, productivity,
and environmental sustainability. These technologies enable precise
monitoring and analysis of various parameters such as milking perfor-
mance, feed intake, climate conditions, and physiological indicators,
which are crucial for optimising farm operations. For example, tech-
nologies that monitor feed intake, body temperature, breathing fre-
quency, and animal mobility are essential for preventing thermal stress,
directly impacting both animal welfare and productivity. Similarly,
early diagnosis of metabolic disorders like ketosis is facilitated by
tracking rumination and resting times, as well as analysing blood
markers such as free fatty acids. In cases of subclinical mastitis, which
can severely affect milk production, DATSs allow for continuous moni-
toring of body and udder temperatures, animal mobility, and relevant
blood indicators, ensuring timely intervention.

Moreover, the reliable detection of oestrus, a key factor in repro-
ductive efficiency, is made possible through the detailed recording of
body temperature, mobility patterns, and behavioural changes,
including vocalisation and mounting activity. During the perinatal
period, when animals are particularly vulnerable to inflammation,
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oxidative stress, and metabolic diseases, DATSs provide crucial insights
by monitoring resting time and evaluating blood indicators like hapto-
globin and calcium levels. Additionally, environmental performance,
increasingly important in sustainable livestock farming, is assessed
through the measurement of greenhouse gas emissions such as methane
and ammonia, linking environmental health with animal management.
Finally, technologies that optimise milking processes contribute signif-
icantly to both feed efficiency and overall farm productivity, under-
scoring the interconnected nature of these technological applications.
By systematically recording and analysing these diverse parameters,
DATSs offer a comprehensive framework for enhancing livestock man-
agement, ensuring that animal welfare, health, and productivity are
maintained at optimal levels.

In the literature, various approaches have been used to categorise
livestock DATSs, helping to clarify their functions and applications. One
such approach was employed by Monteiro et al. [60], who organised
DATSs into four distinct categories: Automatic Milking Systems, Feed
and Live Weight Measurement, Animal Monitoring, and Animal Health
and Welfare. This categorisation provides a structured way to under-
stand the diverse range of technologies available and their respective
roles in livestock management.

For the purposes of this study, a slight modification to the catego-
risation by Monteiro et al. [60] was implemented to better reflect the
interconnectedness of certain technologies and their practical applica-
tion on farms. Specifically, the categories of Animal Monitoring and
Animal Health and Welfare have been merged into a single category.
This decision is driven by the overlap between monitoring activities and
health/welfare outcomes. Technologies designed for monitoring, such
as systems for tracking animal behaviour, movement, and physiological
parameters, are inherently linked to the health and welfare of livestock.
The data generated by these systems are critical for the early detection of
illness, stress, or other welfare-related issues, making them directly
relevant to maintaining and improving animal health. Therefore, the
categorisation of livestock DATSs guiding this study is structured as
depicted in Table 1.

This revised categorisation reflects the practical realities of how
these technologies are deployed on farms and aligns with the broader
trend towards more integrated and efficient DATSs systems. By organ-
ising DATSs in this manner, the study aims to provide a thorough review
of the economic and environmental benefits associated with these
technologies in modern livestock farming.

2.2. Search query

A systematic search procedure was developed by employing Scopus
(www.scopus.com) and Web of Science (www.webofscience.com) for
the selection of the research articles that were used in the analysis. The
search queries were constructed to include key terms related to various

Table 1
Categorisation of Livestock DATSs.

Category Description Example technologies

Automatic Milking
Systems

Automate the milking
process, enhancing labour
efficiency and ensuring
consistent and stress-free
milking environments.
Monitor and optimise feeding
practices and track live
weight for improved
productivity and profitability.
Continuously monitor animal
behaviour, movement,
physiological parameters, and
oestrus cycles to maintain
health, welfare, and support
breeding management.

Robotic Milking Systems,
Automated Milking
Parlours

Feed and Live
Weight
Measurement

Precision Feeding Systems,
Weighing Scales,
Automated Feeders

Animal Health,
Welfare, and
Monitoring

Wearable Sensors, GPS
Tracking, Health
Monitoring Devices,
Behaviour Monitoring
Systems
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aspects of DATSs, such as ““automatic milking,”” *“precision feeding,”’
and ““animal health monitoring,”” combined with terms related to eco-
nomic and environmental outcomes, such as *“economic benefit,”” *"cost
efficiency,”” and “greenhouse gas emissions.”” The full list of search

terms used in each database is provided in Table 2.

2.3. Study selection and screening process

Following the search, a total of 821 articles were initially identified.
The articles were then subjected to a screening process to refine the
selection. This involved removing duplicate records, excluding studies

Table 2
Search engines and queries that were used for the scope of this study.

Search engine Query

Scopus (www.scopus.com) TITLE-ABS-KEY ("automati* milking" OR "robotic
milking" OR "AMS" OR "milking robot" OR "AFS" OR
"automati* feeding” OR "precis* feeding" OR "live weight
measure*" OR "animal monitoring" OR "behavi*
monitoring” OR "animal behavi*" OR "animal health" OR
"animal welfare" OR "heat detection” OR "estrus" OR
"oestrus" OR "collar" OR "face recognition" OR
"automated sensor*" OR "mastitis detection” OR "mastitis
prediction"” OR "lameness detection" OR "[oT" OR "AI" OR
"machine learning" OR "precision feeding system” OR
"animal tracking"” OR "environmental monitoring” OR
"disease detection” OR "health tracking" OR "veterinary
care") AND TITLE-ABS-KEY ("milk production" OR
"milk yield" OR "labo* saving" OR "labo* efficiency" OR
"labo* reduc*" OR "milk yield" OR "milk quality" OR
"energy saving*" OR "reduced production cost" OR "cost
saving*" OR "economic* benefit*" OR "efficiency
improvement” OR "productivity enhancement” OR "feed
optimi?ation" OR "feed efficiency” OR "feed saving”" OR
"profitability” OR "cost reduction” OR "profitability” OR
"cost efficiency” OR "return on investment” OR "ROI" OR
"profit" OR "environmental benefit" OR "greenhouse gas
emission*" OR "GHG" OR "methane emission*" OR
"carbon footprint” OR "ammonia emission*" OR "nitrogen
excretion” OR "reduction in emission*" OR "freshwater
eutrophication” OR "water consumption”) AND TITLE-
ABS-KEY ("PLF" OR '"precision livestock” OR "smart
livestock" OR "smart agriculture” OR "smart farming" OR
"digital farming" OR "data-driven farming" OR "data-
driven agriculture”)

(TS= ("automati* milking" OR "robotic milking" OR
"AMS" OR "milking robot" OR "AFS" OR "automati*
feeding" OR "precis* feeding" OR "live weight measure*"
OR "animal monitoring" OR "behavi* monitoring” OR
"animal behavi*" OR "animal health" OR "animal
welfare" OR "heat detection"” OR "estrus" OR "oestrus" OR
"collar" OR "face recognition”" OR "automated sensor*"
OR "mastitis detection” OR "mastitis prediction” OR
"lameness detection” OR "loT" OR "AI" OR "machine
learning" OR "precision feeding system" OR "animal
tracking" OR "environmental monitoring” OR "disease
detection” OR "health tracking" OR "veterinary care"))
AND (TS= ("milk production” OR "milk yield" OR "labo*
saving" OR "labo* efficiency” OR "labo* reduc*" OR
"milk quality” OR "energy saving*" OR "reduced
production cost" OR "cost saving*" OR "economic*
benefit*" OR "efficiency improvement” OR "productivity
enhancement" OR "feed optimi?ation" OR "feed
efficiency” OR "feed saving" OR "profitability” OR "cost
reduction" OR "profitability” OR "cost efficiency” OR
"return on investment” OR "ROI" OR "profit" OR
"environmental benefit" OR "greenhouse gas emission*"
OR "GHG" OR "methane emission*" OR "carbon
footprint” OR "ammonia emission*" OR "nitrogen
excretion” OR "reduction in emission*" OR "freshwater
eutrophication” OR "water consumption")) AND (TS=
("PLF" OR "precision livestock” OR "smart livestock" OR
"smart agriculture” OR "smart farming" OR "digital
farming" OR "data-driven farming" OR "data-driven
agriculture"))

Web of Science (www.
webofscience.com)
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published before 2014, and limiting the selection to those published in
English. The study followed the PRISMA 2020 methodology, an
evidence-based approach that utilises a structured checklist encom-
passing four key phases: identification, screening, eligibility, and in-
clusion [67]. The study selection and screening process is illustrated in
Fig. 1.

2.4. Data extraction and analysis

For the selected articles, data extraction focused on key elements
relevant to the objectives of the review. This included the year of pub-
lication, the category of DATSs studied, the animal type and the reported
economic and environmental benefits (Table 3). The DATSs were cat-
egorised according to the framework adapted from Monteiro et al. [60],
with modifications as described earlier.

The extracted data were analysed to identify trends, assess the re-
ported benefits of DATSs, animal types, and evaluate the consistency of
findings across different studies. The results are presented in a manner
that highlights the economic and environmental impacts of the livestock
DATSs, with a focus on their practical applications in modern livestock
farming.

3. Results & discussion
3.1. General overview of the selected articles (2014-2024)

A total of 52 articles were selected for this review, covering a range
of DATSs applied in livestock production from 2014 to 2024. This se-
lection reflects the broad range of technologies developed and studied
for optimising livestock production systems. Research on livestock
DATS:s has significantly increased over the past decade, with the highest
number of publications occurring between 2020 and 2022 (Fig. 2). This
trend highlights the growing focus on applying digital solutions to
address challenges in livestock farming, particularly in recent years.

This figure illustrates the distribution of 52 selected articles across
three DATs categories, Automatic Milking Systems (13/52, ~25 %),
Feed and Live Weight Measurement (17/52, ~33 %), and Animal
Monitoring, Health, and Welfare (25/52, ~48 %), based on emerging
animal types identified in the reviewed literature. The database search
did not pre-define animal categories, allowing for the organic identifi-
cation of trends (Fig. 3).

/
Number of records identified through database searching;
- Scopus=460
- Web of Science= 361

Identification

533 records screened

299 of full-text articles assessed for eligibility
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Table 3
Types of data extracted throughout the review process.

Type of data Data recorded

Year of 2014-2024
publication
DATS Category Automatic Milking Systems / Feed and Live Weight Measurement

/ Animal Health, Welfare, and Monitoring

Animal Categories (e.g. dairy cattle, small ruminants, beef cattle,
pigs, poultry)

Economic benefits (e.g., labour reduction, feed efficiency and
waste reduction, increased milk yield, cost savings, reduction in
veterinary costs, profitability improvements, improved
reproductive efficiency).

Environmental benefits (e.g., GHG and carbon footprint
reduction, energy efficiency and savings, lower environmental
impact, health-related environmental benefits).

Other benefits (e.g., animal stress reduction, heat stress
mitigation, enhanced predictive capabilities, improved health
monitoring).

Animal Type

Benefits

The results emphasise the significant focus on dairy cattle, which
highlights the sector’s advanced integration of DATs, particularly in
areas such as health monitoring and milking automation. This promi-
nence reflects the economic importance of dairy farming and the rela-
tively higher adoption of precision technologies within this industry.
However, the limited representation of other livestock species, such as
pigs, beef cattle, and small ruminants, signals a disparity in the devel-
opment and application of DATSs. For instance, while pigs and beef cattle
play critical roles in global livestock production, their specific chal-
lenges, such as health monitoring, feed efficiency, and environmental
impact management, remain underexplored. Similarly, small ruminants,
despite their economic and cultural significance in many regions, are
underrepresented, especially in the context of emerging technologies
like AMS. Moreover, the absence of poultry in the reviewed articles is
notable, given its significant contribution to protein supply and its
unique requirements for disease control, environmental monitoring, and
productivity optimisation. These gaps underline the need for more in-
clusive research efforts that address the distinct needs of these under-
represented species. Developing precision technologies tailored to
diverse livestock systems will ensure broader adoption and enhance the
overall impact of DATs in promoting sustainable and efficient livestock
production globally.

} 288 records were excluded due to filters based on

—H‘ language, publication year, and the removal of
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Fig. 1. PRISMA flow diagram to illustrate the steps involved in the review.
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2019 2020 2021 2022 2023 2024

Year of Publication

Fig. 2. Number of papers published by year up until analysis was completed on Oct 10, 2024.

B Dairy cattle [} Beef Cattle

20

15

10

Number of Selected Articles

Automatic Milking
System
(13/52 =0,25)

Feed and Live Weight
Measurement
(17/52 = 0,33)

@ Small Ruminants [l Pigs

Animal monitoring, health
and welfare
(25/52 ~ 0,48)

Fig. 3. Number of Papers by each DATSs Category and Animal type up until analysis was completed on Oct 10, 2024.

3.2. Automatic milking systems

The adoption of AMS represents a transformative shift in modern
dairy farming, offering substantial benefits for improving productivity,
efficiency, and sustainability. These systems have demonstrated signif-
icant potential to enhance milk yield, quality, and overall herd man-
agement while reducing labour costs and energy consumption. The
integration of AMS is widely considered a game-changer for farm
management, offering benefits such as enhanced milk yield, labour
reduction, and more efficient monitoring of animal health and produc-
tivity. Dairy farmers leverage these systems to optimise their operations,
improve herd health management, and reduce operational costs. From
the selected articles, two animal categories were identified; dairy cattle
and small ruminants.

3.2.1. Dairy cattle
The integration of AMS in dairy cattle has demonstrated significant
potential to improve milk production, quality, and overall farm

management. The adoption of AMS is driven by the need to enhance
productivity, reduce labour costs, and ensure better health monitoring
of dairy herds. These systems contribute to optimising resource use,
reducing operational demands, and improving profitability through
advanced automation and data integration.

Economic analyses strongly highlight the benefits of AMS adoption.
Gargiulo et al. [37] developed a web-based Decision Support System
(DSS) known as the Integrated Management Model, utilising data from
37 dairy farms. The model evaluated physical and economic perfor-
mance with a prediction accuracy margin of 2 % to 14 %. By forecasting
changes in profitability, the model provided a flexible tool for optimis-
ing farm operations. Similarly, Heikkilda and Myyra [43], using data
from 1966 observations of Finnish dairy farms, demonstrated that
transitioning to AMS resulted in total factor productivity growth of 3.1
% annually, outperforming the 1.7 % growth of conventional milking
systems.

Operational efficiency is further supported by studies such as Pez-
zuolo et al. [68], which highlighted AMS’s ability to reduce labour costs,
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increase milking frequency, and improve milk yields. Productivity gains
of 10-15 % and enhanced operator efficiency by 1.5-2 times were re-
ported, along with improved cow health monitoring. Furthermore, AMS
has been shown to enhance operator productivity by 1.5-2 times and
increase cow productivity by 10-15 %, while also improving milk
quality monitoring and cow health assessment according to Sitdikov
et al. [76]. In another study, Priekulis et al. [71] estimated milk yield
increases of 5-10 % and significant labour reductions through imme-
diate milk quality testing. Expanding on these findings, Pezzuolo et al.
[69] conducted an experiment on a dairy farm in Treviso, Italy, equip-
ped with AMS- two Lely Astronaut A4 robots for voluntary milking,
along with Automated Feeding Systems (AFS), and Robotic Scrapers.
Energy consumption was reduced by at least 35 %, reflecting the effi-
ciency gains of automation compared to traditional systems.

In addition to economic benefits, AMS also supports environmental
sustainability. Bianchi et al. [14] used a Life Cycle Assessment across
five dairy farms in Lombardy, Italy, to evaluate the environmental im-
pacts of AMS. The study reported reductions in global warming potential
by 1.20 % to 5.83 %, alongside mitigations in acidification and eutro-
phication when energy use was optimised. These improvements were
linked to increased milk production efficiency, highlighting the delicate
trade-offs between productivity gains and energy consumption.

Beyond economic and environmental benefits, AMS offers powerful
tools for health and welfare monitoring. Televicius et al. [79] used Lely
Astronaut® A3 milking robots for monitoring key health indicators like
rumination time, milk fat/protein ratio, milk yield, milk lactose con-
centration, electrical conductivity, somatic cell count, and feed intake.
The study revealed that cows with higher milk lactose concentrations
(>4.70 %) exhibited increased activity and a reduced risk of mastitis and
metabolic disorders. Similarly, Bonora et al. [18] emphasised the value
of AMS-generated data in herd segmentation and management. Benni
et al. [12] used numerical models to assess cows’ responses to high
Temperature-Humidity Index conditions, by integrating technologies
like the AMS ‘Astronaut A3 Next’ system and Lely Qwes-H collars,
highlighting AMS’s role in targeted cooling strategies. These strategies
not only reduced heat-related losses but also improved milk quality and
quantity, showcasing the comprehensive utility of AMS in addressing
heat stress. AMS also plays a crucial role in predictive decision-making.
Bovo et al. [19] developed a Random Forest model that predicted milk
yield based on environmental conditions and AMS data, achieving a low
prediction error of 2 %. This highlights the potential of AMS in sup-
porting farm-level decision-making and planning future revenue.

Despite these advantages, the adoption of AMS faces notable chal-
lenges. High upfront costs and ongoing maintenance requirements
remain significant barriers, particularly for smallholder farms with
limited financial and technical resources. The scalability of AMS is
further hindered by the lack of targeted support and training pro-
grammes, which are essential for ensuring equitable access. Addition-
ally, while studies such as Pezzuolo et al. [69] and Bianchi et al. [14]
provide compelling evidence of AMS’s benefits, gaps persist in under-
standing its long-term sustainability across diverse farm sizes, regions,
and production systems.

Further research should focus on addressing these limitations by
expanding the scope of AMS integration to include advanced machine
learning algorithms and predictive analytics. These technologies could
enhance AMS’s functionality, enabling the simultaneous achievement of
short-term productivity goals and long-term sustainability objectives.
Moreover, future studies should prioritise standardising metrics to
resolve conflicting results, such as variations in reported productivity
gains or environmental impacts. For instance, while AMS reduces energy
consumption in some contexts [69], the trade-offs between energy
savings and increased automation demand further exploration.

The benefits of AMS, as demonstrated in the reviewed studies, are
significant and multifaceted, encompassing productivity, sustainability,
and animal welfare. However, realising its full potential requires a
comprehensive approach that combines technological innovation,
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targeted policy support, and interdisciplinary research. Addressing the
challenges of cost, scalability, and long-term sustainability will be
crucial for ensuring that AMS benefits are accessible to a wider range of
producers, thereby contributing to a more resilient and efficient agri-
cultural sector.

3.2.2. Small ruminants

The adoption of AMS in small ruminants, such as sheep and goats,
has lagged behind dairy cattle due to lower milk production levels,
differing production systems, and unique anatomical and physiological
characteristics. These factors necessitate specific adaptations, such as
tailored teat cup sizes, optimised vacuum settings, and cluster removal
strategies, to improve milking efficiency and animal welfare [31]. For
instance, small ruminants exhibit a higher proportion of cisternal milk,
which influences milking routines and reduces the necessity for
pre-milking teat preparation except in herds with high mastitis risks
[31]. Furthermore, advancements like automatic cluster removal have
been shown to reduce overmilking, improve teat health, and enhance
milking efficiency in small ruminants [31].

Despite these technological advances, significant gaps persist in
understanding the long-term economic viability and broader adoption of
AMS in small ruminant systems, particularly for small-scale or extensive
operations. The cost of implementing AMS, combined with the unique
anatomical challenges such as unbalanced udders and varying milk flow
profiles, underscores the need for further optimisation and stand-
ardisation of these systems [31]. Additionally, conflicting findings on
cost-effectiveness, milk quality, and udder health in AMS-equipped
farms highlight the need for research to resolve these discrepancies
and adapt AMS technologies to diverse production systems.

Future efforts should prioritise developing cost-effective AMS tech-
nologies tailored to the physiological traits of small ruminants and
adaptable to extensive and smallholder farming contexts. Research
should also focus on optimising milking parameters, such as vacuum
levels and pulsation frequencies, to improve animal welfare and milk
quality [31]. Addressing these gaps can pave the way for broader
adoption of AMS, enhancing productivity, sustainability, and animal
welfare in small ruminant farming.

3.3. Feed & live weight measurement

The adoption of Feed and Live Weight Measurement technologies has
demonstrated significant potential in improving the efficiency and sus-
tainability of livestock farming. These technologies optimize feeding
practices, reduce waste, and enhance live weight monitoring, thereby
contributing to both economic and environmental benefits. This section
presents an analysis of these advancements, highlighting their impact on
productivity, resource management, and cost savings across various
livestock systems, including dairy cattle, beef cattle, small ruminants,
and pigs.

3.3.1. Dairy cattle

DATSs significantly enhance feeding efficiency, energy management,
and health monitoring in dairy cattle systems. In a study by Abeni et al.
[1], an automated precision feeding system optimised the dietary intake
of Italian Friesian cows by using a near-infrared analyser to monitor and
adjust dry matter levels in corn silage. This ensured cows received a
balanced and consistent diet, demonstrating the potential of such sys-
tems to improve feeding efficiency and milk production. However, while
promising, the broader application of such systems in varying produc-
tion environments warrants further investigation to assess their scal-
ability and long-term economic benefits.

Similarly, Conboy et al. [26] highlighted the role of automated milk
feeders in identifying health issues in calves, particularly Neonatal Calf
Diarrhoea. Reduced milk intake emerged as a reliable early indicator,
allowing farmers to intervene promptly and reduce medical costs.
Despite these findings, challenges remain in integrating such systems
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into small-scale or extensive farming operations due to high initial costs
and data management complexities. Expanding research to include
diverse herd sizes and environmental contexts could enhance the
accessibility and utility of automated milk feeders.

Energy efficiency is another critical area addressed by DATSs. Tan-
gorra and Calcante [78] demonstrated that an AFS reduced energy
consumption, underscoring the substantial operational benefits of
automation. Additionally, feed waste was reduced by 75 %, leading to a
33 % reduction in daily feeding costs. However, Wardal et al. [87] found
that while robotic feeding systems required less direct energy than
conventional systems, their cumulative energy consumption was 35.18
% higher due to the production and maintenance demands of automated
technologies. This discrepancy highlights the need to balance immediate
operational efficiencies with the long-term sustainability of robotic
systems. Comparative studies across farming contexts could further
clarify these trade-offs and guide the design of more energy-efficient
technologies.

Although DATSs offer significant advancements in feeding manage-
ment, gaps in understanding remain. For instance, while technologies
like near-infrared analysers and automated milk feeders show potential
in optimising feed efficiency and early disease detection, the long-term
impacts on animal health, welfare, and overall productivity require
further study. Additionally, the economic viability of these systems in
smallholder and resource-constrained settings remains uncertain. Future
research should focus on developing cost-effective, adaptable technol-
ogies that cater to diverse farming systems while addressing the envi-
ronmental and economic challenges associated with their adoption.

3.3.2. Beef cattle

Beef cattle farming prioritises growth efficiency, animal welfare, and
environmental sustainability. The integration of livestock DATSs has
significantly advanced feed conversion, weight management, and herd
monitoring. By leveraging technology, the industry can optimise
resource use and improve productivity while addressing sustainability
goals.

One notable development is the body weight prediction model pro-
posed by Biase et al. [15]. This model integrates meteorological data
such as temperature, precipitation, humidity, and wind speed with dry
matter intake, demonstrating moderate-to-high accuracy in predicting
body weight. Compared to traditional models like Autoregressive Inte-
grated Moving Average and Seasonal Autoregressive Integrated Moving
Average, the deterministic model provides superior support for
decision-making processes in feed efficiency and supply chain optimi-
sation. However, its adoption may require further refinement to account
for region-specific climatic variability and operational differences in
beef farming systems. This highlights a gap in assessing its applicability
across diverse production systems.

In a complementary approach, Garcia et al. [36] explored machine
learning techniques to detect weight anomalies during the fattening
process. Their study, using Decision Trees, Random Forests, Gradient
Boosting, and K-Nearest Neighbours, identified Decision Trees as the
most accurate model with a mean absolute error of 5.4 kg. By con-
structing ideal weight intervals through a forest isolation algorithm, the
framework enabled early detection of anomalous weight changes,
improving paddock management and identifying underperforming ani-
mals. Despite its promise, further validation is required in large-scale
commercial systems to ensure its robustness and scalability.

Bartels et al. [9] proposed an Al-based device using Recurrent Neural
Networks and TinyCowNet to monitor cow behaviour with 95.7 % ac-
curacy. The system, tested on six Japanese Black beef cows (Kuroge
Washu), utilised cameras and neck-attached accelerometers to track
feeding times and grass intake. While the results underscore the po-
tential of such systems in refining feeding schedules and enhancing ef-
ficiency, the limited sample size and focus on a single breed highlight the
need for broader trials across varied production environments.

While these studies showcase the potential of DATSs to enhance
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feeding efficiency, weight management, and behavioural monitoring in
beef cattle, certain limitations and gaps remain. The economic feasibility
of these technologies for smallholder farms and extensive systems re-
quires further exploration, as does their adaptability to diverse envi-
ronmental and operational conditions. Additionally, conflicting results
regarding the scalability and accuracy of machine learning models
suggest a need for standardised evaluation metrics and cross-context
validation.

Future research should prioritise developing cost-effective, scalable
systems tailored to the needs of diverse farming operations. This in-
cludes incorporating real-time data analysis, improving user-friendly
interfaces, and integrating multi-species applications. Such advance-
ments will enable broader adoption, bridging the gap between research
innovations and practical implementation, ultimately supporting both
academic understanding and commercial viability.

3.3.3. Small ruminants

The integration of DATSs in small ruminant production has demon-
strated potential benefits in terms of labour efficiency, animal welfare,
and sustainability, although challenges and gaps remain in optimising
their use across diverse systems. Morgan-Davies et al. [61] conducted a
three-year study on an extensive mountain farm with 900 ewes,
comparing conventional management with a DATSs-enabled approach
using electronic identification technology. While lambs in the DATSs
group exhibited slightly lower final weights than the conventional
group, the difference was not significant. Importantly, the DATSs
approach resulted in a 36 % cumulative reduction in labour, with 19 %
less time required per ewe-lamb pair and annual savings of £3 per ewe.
This study underscores the potential of electronic identification systems
to enhance labour efficiency without compromising flock health,
although the slightly reduced lamb weights suggest that further opti-
misation of feeding or management protocols may be needed.

Toro-Mujica et al. [81] examined strategies to reduce emissions per
kilogram of live or carcass weight by improving animal efficiency
through performance recording and artificial insemination. While initial
findings indicated a higher carbon footprint for DATSs compared to
traditional methods, the integration of artificial insemination with
performance recording significantly improved carbon efficiency. This
study highlights the trade-offs inherent in adopting advanced technol-
ogies, emphasising the need for comprehensive evaluations of their
environmental impacts under varying production conditions.

Behavioural monitoring is another critical application of DATSs, as
changes in feeding and rumination patterns can indicate health issues.
Thorup et al. [80] highlighted the value of monitoring instruments for
analysing factors affecting animal health and welfare, providing
actionable insights for decision-making. However, while such tools
improve management efficiency, challenges remain in ensuring afford-
ability and accessibility for smaller producers. Addressing these barriers
is essential to maximise the adoption of behavioural monitoring systems
across the industry.

Weight management remains a cornerstone of profitability in meat
production, as highlighted by Brown et al. [21], who demonstrated that
consistent weight management across all growth stages positively affects
animal development and economic outcomes. This underscores the
critical role of accurate and efficient weight monitoring tools in max-
imising returns in small ruminant systems. Samperio et al. [74] proposed
a novel 3D imaging system for weighing lambs, offering significant
welfare benefits by reducing stress during weighing. With an 86 % ac-
curacy rate and a mean absolute error of 1.15-1.37 kg, the system
demonstrated real-time capabilities and cost-effectiveness, priced at
approximately €200 per camera. The study monitored 272 Rasa Ara-
gonesa lambs, with weights ranging from 13.5 to 27.7 kg. This tech-
nology has the potential to streamline weight monitoring processes and
improve management efficiency. However, the study primarily evalu-
ated the system in controlled conditions, leaving questions about its
performance in diverse farm environments. Future work should assess
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its scalability and compatibility with extensive systems.

The studies reviewed illustrate the promising applications of DATSs
in small ruminant farming, particularly for labour efficiency, carbon
efficiency, and animal welfare. While technologies like electronic
identification technology and 3D imaging systems have shown potential,
challenges such as scalability, cost-effectiveness, and adaptation to
varied production contexts must be addressed to realise their full ben-
efits. Additionally, results regarding carbon efficiency and lamb weight
outcomes highlight the need for standardised methodologies to evaluate
these technologies across diverse systems. Future research should pri-
oritise developing affordable, adaptable DATSs that cater to the specific
needs of small ruminant producers, particularly in resource-constrained
settings.

3.3.4. Pigs

The reviewed studies highlight the transformative potential of DATSs
in pig farming, particularly for improving feed efficiency, monitoring
growth, and enhancing productivity. The importance of feeding
behaviour monitoring is underscored by Garrido-Izard et al. [38], who
employed electronic feeding stations to analyse feed intake patterns
during the fattening period of 30 Landrace pigs. While individual feed
intake behaviours varied, the study found that weight gain, total feed
intake, and efficiency were consistent across the group. Significant
correlations between variations in feed intake rates and efficiency
indicate the potential for tailored feeding strategies to enhance livestock
management. However, the study highlights a gap in understanding the
long-term impacts of such interventions on productivity and welfare,
suggesting future research should explore the scalability and applica-
bility of these technologies in larger and more diverse settings.

Fernandez et al. [35] conducted three experiments involving 240
growing-finishing pigs to evaluate responses to changes in feeding
strategies. Utilising a dynamic linear regression model, the study pre-
dicted individual pig weights with mean relative prediction errors of 1.0
% for one-day and 3.3 % for seven-day forecasts. The findings demon-
strate the potential of precision feeding systems to optimise growth
performance and feed utilisation while enabling real-time monitoring of
feed efficiency. Precision feeding strategies, such as those evaluated by
Remus et al. [72], offer a promising approach to optimising nutrient
utilisation. Using the Individual Precision Feeding model developed by
Hauschild et al. [42], the study tailored diets for 95 growing pigs based
on their daily lysine and threonine requirements [72]. By aligning
nutrient intake with the minimal requirements for sustaining growth
performance, the approach improved nutrient efficiency while reducing
feed costs.

In addition to these studies on precision feeding, Gauthier et al. [39]
evaluated algorithms for predicting litter weight from lactating sows,
demonstrating that an ensemble algorithm achieved a mean absolute
percentage error of 9.01 %, closely followed by linear regression at 9.30
%. These findings highlight the utility of predictive algorithms in
improving productivity by accurately estimating litter weight at wean-
ing, a key phenotype closely related to milk production. Despite prom-
ising results, the study emphasises the need for further refinement of
prediction models to account for farm-specific variables and improve
accuracy across diverse systems.

While technologies like predictive algorithms, electronic feeding
stations, and precision feeding strategies have shown promise, several
challenges persist. These include ensuring scalability, adapting systems
to diverse farm environments, and addressing the socio-economic bar-
riers to adoption, particularly for small-scale producers.

Conflicting findings, such as the consistent weight gain in Garrido-
Izard et al. [38] versus the individual variability in Remus et al. [72],
underline the need for standardised methodologies to evaluate livestock
DATSs across different contexts. Moreover, the potential trade-offs be-
tween efficiency gains and animal welfare must be carefully examined to
ensure ethical and sustainable production practices. Future research
should prioritise the development of adaptable, cost-effective solutions

Smart Agricultural Technology 10 (2025) 100783

that cater to the diverse needs of pig producers.
3.4. Animal monitoring, health & welfare

The role of DATSs is increasingly critical for improving animal
health, welfare, and productivity. These technologies enable real-time
monitoring of animal behaviours and physiological conditions, facili-
tating the early detection of diseases and enhancing overall herd man-
agement. Monitoring serves not only as a tool for observation but also as
a vital process for initiating data collection, which can be utilised in
Artificial Intelligence (AI) and Machine Learning (ML) models to enable
proactive interventions and informed decision-making. This section
explores the benefits and applications of these technologies across
various livestock systems, including dairy cattle, small ruminants, and
pigs. The animal types discussed emerged organically from the selected
studies, reflecting their relevance to the reviewed research, rather than
being predefined categories.

3.4.1. Dairy cattle

Effective animal monitoring is indispensable in dairy cattle farming,
as it directly influences milk production, reproductive performance, and
overall farm profitability. Moreover, it helps address critical challenges
such as disease prevention, heat stress, and environmental sustainabil-
ity. The integration of DATSs provides real-time insights into cattle
health and behaviour, enabling informed herd management decisions
and proactive interventions.

For instance, the AFICollar® sensor system evaluated by Leso et al.
[49] demonstrated the capability to track feeding and rumination be-
haviours accurately, aligning with visual observations. Such systems
empower farmers to make timely adjustments to herd management
practices, thereby enhancing overall productivity and health. Similarly,
Mihai et al. [58] investigated the relationships among Body Condition
Score, lying behaviour, and milk production, showing that variations in
lying patterns could significantly influence milk yield efficiency. Despite
these advancements, the accessibility of such technologies for
small-scale farms remains a concern, necessitating scalable solutions.

The implementation of early disease detection systems leveraging
DATSs enables timely interventions that prevent the escalation of health
issues, thereby mitigating productivity losses [88]. For instance, the
LiveCare system, an IoT-based framework utilising a cow disease pre-
diction algorithm, has demonstrated impressive accuracy in diagnosing
a range of conditions in dairy cows. This system, as presented by
Chatterjee et al. [24], predicts diseases such as fever (detection proba-
bility above 95 %), cysts (90 %), mastitis (95 %), pneumonia (85 %),
black quarter (83 %), and foot-and-mouth disease (72 %) by monitoring
cow behavioural changes. Its cloud-based infrastructure allows farmers
to track individual cow health in real time, supporting effective herd
management and timely treatment. Despite its effectiveness, integrating
LiveCare with other decision-support tools and expanding its application
to diverse farming contexts could enhance its utility. In disease predic-
tion, ML models have shown significant promise. Fadul-Pacheco et al.
[34] employed multiple classification methods, including a random
forest algorithm, achieving 85 % sensitivity and 62 % specificity for
predicting clinical mastitis. Building on this, Casella et al. [23] devel-
oped a cost-sensitive ML framework that integrated a Cost Optimisation
Worth feature selection method. This framework achieved a remarkable
97 % accuracy in detecting Bovine Respiratory Disease up to five days
before clinical diagnosis. By analysing data on activity, feeding behav-
iours, barn temperature, and manual health examinations, the study
demonstrated the dual benefits of reducing data collection costs and
maintaining high detection accuracy. While these tools are highly
effective, standardising data collection processes across farms is crucial
for broader adoption and improved predictive capabilities. Portable
motion sensors, as used by Haladjian et al. [41], enable the early
detection of lameness with a 91.1 % accuracy by comparing deviations
from baseline gait models. This highlights their role in reducing
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productivity losses associated with mobility issues. Rumination moni-
toring, emphasised by Gusterer et al. [40], offers another dimension to
early disease detection. Their study showed that rumination activity
changes could predict diseases up to five days before clinical diagnosis,
providing farmers with a valuable early warning system. However,
standardised metrics for rumination monitoring across diverse farm
setups are needed to ensure broader applicability.

Beyond disease detection, DATSs play a pivotal role in enhancing
milk production through advanced monitoring and predictive analytics.
Nguyen et al. [64] utilised machine learning algorithms, including
Support Vector Machine Regression, Artificial Neural Networks (ANN),
and Random Forest, alongside a multiple linear regression model, to
analyse data from 36 Holstein-Friesian cows. By employing autore-
gressive models that used past data, the study improved the accuracy of
milk production predictions. The findings revealed that higher milk
yields (up to 20 kg/day) were associated with decreases in fat and
protein content, offering actionable insights into nutritional manage-
ment strategies. However, further exploration of these trade-offs is
essential to balance productivity and milk quality. Similarly, Mota et al.
[62] employed Near-Infrared Spectroscopy and ANN to monitor milk
coagulation traits in real time, studying 499 Holstein cows. This
approach optimised milk quality and cheese-making potential,
providing an innovative tool for value-added dairy production. Further
extending the utility of DATSs, Antanaitis et al. [3] examined milk
lactose concentrations as indicators of health and productivity in Hol-
stein cows. Their findings revealed that higher lactose levels were
associated with a 16.14 % increase in milk yield but a 5.05 % reduction
in milk protein concentration. These results suggest that milk compo-
sition monitoring could play a pivotal role in precision livestock
farming, though additional studies across varying herd conditions are
essential to confirm these findings. These advancements underscore the
critical role of data-driven approaches in supporting farmers to plan for
future revenue while ensuring product quality.

Heat stress significantly impacts dairy cattle productivity, under-
scoring the importance of advanced monitoring and management
technologies. Al-based solutions have emerged as effective tools for
detecting and mitigating heat stress. Ma et al. [54] developed an Al
model capable of estimating deep-body temperature in cattle, enabling
real-time health anomaly detection. Similarly, Levit et al. [50] tested a
dynamic cooling system incorporating in vivo temperature sensors,
resulting in a 61.1 % reduction in heat stress duration. This intervention
notably increased milk fat, protein, and energy-corrected milk yields. In
another approach, Shu et al. [75] used machine learning models,
particularly ANN, to predict physiological responses such as respiration
rate and vaginal temperature under heat stress. ANN demonstrated su-
perior predictive accuracy, allowing farms to optimise cooling strategies
like sprinklers, reducing operational costs by minimising water and
energy use. Barn renovation, including fans and sprinklers, was also
identified as an effective heat stress mitigation strategy, leading to a 20
% increase in milk yield during summer months [52]. Collectively, these
findings highlight the importance of precision cooling strategies for
improving animal welfare and profitability, though further research into
cost-effective implementation is warranted.

In addition to addressing heat stress, monitoring technologies have
revolutionised reproductive management, a critical factor in maintain-
ing herd productivity and profitability. Oestrus detection technologies
are central to improving breeding efficiency and reducing reproductive
losses. Arago et al. [5] developed an IoT system for non-invasive oestrus
detection, combining pan-tilt-zoom cameras and a web application to
monitor standing-heat behaviours. Despite a moderate detection effi-
ciency of 50 %, this system offers potential for minimising management
workloads. Lin et al. [51] used neck-mounted activity monitoring tags
and Transformer neural networks to detect pregnancy losses in 185
dairy cows with an 87 % accuracy. This model provides accurate,
interpretable predictions, enabling farmers to prevent economic losses
through timely interventions. Lovarelli et al. [53] further evaluated
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pedometer-based oestrus detection, demonstrating improved farm
management by reducing reliance on manual observation and
enhancing resource allocation. Advanced technologies like augmented
reality combined with deep learning offer innovative solutions for oes-
trus detection and cow identification. Arikan et al. [6] introduced a
system leveraging YOLOvV5 models to detect mounting behaviour with
99 % accuracy, integrating augmented reality for enhanced reproduc-
tive management. This approach reduces costs, prevents delayed calf
births, and supports timely insemination, though scaling these tech-
nologies for smallholder systems remains a challenge. Silent oestrus, a
significant issue in buffalo farming, has also been addressed through
innovative solutions. Devi et al. [29] developed a DSS based on buffalo
vocalisations, achieving a 95 % accuracy in distinguishing oestrus from
non-oestrus phases. This system offers a cost-effective, automated
alternative to labour-intensive methods, demonstrating the potential of
integrating vocalisation-based algorithms into broader livestock man-
agement frameworks.

Environmental benefits of monitoring technologies are equally
noteworthy. Improved udder health monitoring can lower greenhouse
gas emissions by 0.04-0.06 % per 5 % increase in infected cow detection
[14]. Lovarelli et al. [53] highlighted that integrating DATSs into dairy
management practices, such as increasing pasture access during dry
periods, reduced carbon footprints by 6-9 %. These findings underscore
the dual benefits of monitoring technologies in enhancing sustainability
and operational efficiency. McNicol et al. [57] explored the environ-
mental benefits of livestock DATSs, focusing on technologies such as
automatic weight platforms, fertility sensors, and health sensors. Their
results showed a reduction in GHG emissions of up to 12 % in housed
systems, with notable improvements in production efficiency. While
these findings demonstrate the environmental potential of DATSs, the
high initial costs and technical complexity of these systems often limit
adoption, particularly among smallholder farmers.

Advanced monitoring technologies have revolutionised animal
health, productivity, and sustainability in livestock farming, offering
precise tools such as IoT-based systems, wearable sensors, and machine
learning models for early disease detection and efficient herd manage-
ment. These technologies have demonstrated clear benefits, including
enhanced productivity, reduced greenhouse gas emissions, and
improved resource utilisation. However, their adoption remains limited,
particularly among smallholder farms, due to high costs and technical
complexity. Addressing these barriers through the development of cost-
effective, scalable solutions is essential to ensure broader accessibility.
Furthermore, integrating monitoring systems with predictive analytics
and decision-support tools can provide holistic insights, enabling farms
to optimise health management and environmental practices. By
fostering innovation and accessibility, monitoring technologies can
transform livestock farming into a more sustainable and resilient sector.

3.4.2. Small ruminants

Monitoring technologies have increasingly demonstrated their ca-
pacity to transform the management of small ruminants, particularly in
dairy goat farming. Belanche et al. [11] evaluated the Eskardillo tool on
12 Murciano-Granadina dairy goat farms, comparing them to 12 control
farms over several years. The use of Eskardillo resulted in significant
gains, including a 14-17 % increase in milk yield per lactation. These
improvements were attributed to enhanced culling strategies and ge-
netic progress achieved through precise selection of high-merit goats.
Additionally, the tool effectively reduced seasonality in milk production,
leading to a 17 % increase in off-season milk output. These findings
emphasise the tool’s potential to optimise productivity while supporting
sustainable intensification in dairy goat farming.

Reproductive management also benefited significantly from the
Eskardillo tool. Goats on Eskardillo-managed farms demonstrated
shorter unproductive periods, with reductions in the age at first partum
(—30 days) and dry periods (—20 days). Furthermore, dry periods were
standardised to approximately two months, supporting consistent and
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optimised lactation cycles. These enhancements were achieved by
leveraging precise monitoring of physiological status and reproductive
cycles, enabling informed and timely breeding decisions. Expanding on
the success of Eskardillo, Belanche et al. [10] introduced the RUMIA
platform, which incorporated real-time feedback on milk yield,
composition, health status, and reproductive performance. This plat-
form advanced farm management by enabling customised lactation
lengths, accelerating genetic progress, and further refining culling
strategies. By reducing unproductive periods and mitigating production
seasonality, RUMIA facilitated the adoption of more sustainable and
economically viable practices in dairy goat farms.

While these tools underline the transformative potential of data-
driven platforms in small ruminant management, gaps and challenges
remain. The current research primarily focuses on Murciano-Granadina
goats and intensively managed farms, leaving questions about applica-
bility to other breeds, production systems, and regions unanswered. The
effectiveness of these platforms in extensive or mixed farming systems
remains unclear and warrants further exploration. Additionally, inte-
grating advanced machine learning algorithms could enhance predictive
health monitoring, improve welfare outcomes, and strengthen envi-
ronmental sustainability through precision farming practices. The
Eskardillo and RUMIA platforms highlight the importance of tailored
monitoring technologies in driving productivity, sustainability, and
welfare in small ruminant farming. However, future research should
prioritise their scalability and adaptability across diverse farming con-
texts. This would enable broader adoption, ultimately benefiting both
the academic and commercial communities while supporting the global
push for sustainable livestock management practices.

3.4.3. Pigs

Monitoring technologies are increasingly pivotal in improving pig
welfare and production efficiency, as evidenced by studies integrating
novel tools and predictive models into pig farming. Garrido-Izard et al.
[38] demonstrated the effectiveness of surface temperature recorders
and electronic feeding stations in monitoring physiological responses
during the fattening period. Their study showed that pigs with higher
average surface temperatures exhibited lower variations in recorded
temperatures, suggesting a potential link between thermal stability and
overall health status. By combining temperature data with feeding
behaviour, the research underscored the value of monitoring technolo-
gies in enhancing welfare through a deeper understanding of pigs’
physiological conditions.

Aparna et al. [4] extended this approach to improve reproductive
management, focusing on the use of precision livestock farming tools to
predict the onset of farrowing in loose-housed sows. The researchers
developed a Hidden Phase-type Markov Model (HPMM) that utilised
sensor data, including water consumption and activity levels, to provide
early warnings of farrowing with an average lead time of 11.5 h. This
predictive system enabled better supervision and optimised resource
allocation, significantly reducing piglet mortality by facilitating timely
intervention. Furthermore, the system minimised energy waste by
activating heating systems only when needed, showcasing a practical,
cost-effective solution for improving management efficiency.

While these tools highlight the potential for advancing welfare and
productivity, they also reveal gaps that merit further research. For
instance, the link between thermal stability and health status identified
by Garrido-Izard et al. [38] necessitates deeper exploration to under-
stand its implications for broader health management strategies. Simi-
larly, the generalisability of predictive farrowing systems like HPMM to
other housing systems or pig breeds remains uncertain, emphasising the
need for further validation across diverse contexts.

Moreover, the integration of multi-sensor technologies, as seen in
Aparna et al. [4], could be expanded to include additional behavioural
and physiological metrics, potentially enhancing predictive accuracy
and enabling more holistic management approaches. Future research
should also address the scalability of such systems, ensuring their
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accessibility for smallholder farms and commercial-scale operations
alike.

The findings from these studies demonstrate the transformative po-
tential of monitoring technologies in pig farming. By bridging the gap
between research and practice, these tools not only improve welfare and
productivity but also align with broader goals of sustainability and
resource efficiency. However, a more comprehensive exploration of
their long-term impacts and adaptability is essential to maximise their
contribution to the academic and commercial communities.

4. Limitations & future research

The present review provides a comprehensive analysis of the eco-
nomic and environmental benefits of DATSs in livestock farming, syn-
thesising findings from 52 peer-reviewed studies. While the systematic
approach and structured categorisation of DATSs offer valuable insights,
several limitations in our methodology and scope should be acknowl-
edged, which could serve as focal points for future research. One of the
primary limitations of our study lies in the specificity of the search
queries used during the literature review process. By focusing predom-
inantly on general terms related to DATSs and their economic and
environmental impacts, our search queries may not have captured
studies focusing specifically on certain livestock species, such as poultry
or other less commonly studied categories, including small ruminants
like sheep and goats, or dual-purpose breeds. Consequently, the sys-
tematic search may have unintentionally excluded relevant studies that
could provide a more nuanced understanding of the benefits and limi-
tations of DATSs for these species. While our categorisation framework
enabled the analysis of broad trends, the lack of animal-specific search
terms may have limited the exploration of technology applications
tailored to specific species or production systems. Another limitation
stems from the time frame and language restrictions applied during the
screening process. The decision to include only studies published be-
tween 2014 and 2024 and to restrict the review to English-language
publications, though methodologically sound, could have resulted in
the omission of earlier or non-English studies that might offer valuable
insights into the historical development or region-specific applications
of DATSs. This limitation is particularly relevant for understanding the
adoption and adaptation of these technologies in diverse cultural and
economic contexts.

The selected studies also disproportionately focus on certain live-
stock species and production systems, with dairy cattle dominating. This
reflects the relatively advanced state of DATSs adoption in the dairy
sector but inadvertently limits the generalisability of the findings to
other livestock systems. Small ruminants, pigs, and other species are
underrepresented, which may obscure unique challenges and opportu-
nities associated with implementing DATSs in these systems. Similarly,
intensive and semi-intensive systems receive more attention than
extensive or mixed systems, leaving gaps in understanding the scal-
ability and applicability of these technologies in less controlled envi-
ronments. Furthermore, the review did not extensively explore the
socio-economic barriers to DATSs adoption, particularly in small-
holder or resource-constrained settings. Although the results underscore
the potential of DATSs to improve productivity and sustainability, high
initial costs, maintenance demands, and technical complexity remain
significant challenges for widespread adoption. Addressing these bar-
riers would require a deeper investigation into policy frameworks,
financial incentives, and capacity-building initiatives, aspects that fall
beyond the scope of this review.

Another gap lies in the limited consideration of the integration of
DATSs with other technological advancements, such as blockchain for
traceability, advanced genetic tools, or renewable energy systems. While
the reviewed studies emphasise the standalone benefits of DATSs, their
potential synergy with complementary technologies represents an area
ripe for exploration. Similarly, the long-term sustainability and lifecycle
impacts of these technologies, including their end-of-life disposal and
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energy dependencies, were not comprehensively examined in the
existing literature or our synthesis.

Finally, the dynamic and rapidly evolving nature of DATSs poses an
inherent limitation to any review. As technological advancements and
innovations continue to emerge, the findings of this study may require
regular updates to remain relevant. Future research should adopt
adaptive methodologies to track and incorporate the latest de-
velopments in DATSs, ensuring that the evolving landscape of digital
agriculture is adequately represented. Despite these limitations, the
findings of this review highlight the transformative potential of DATSs
in livestock farming and provide a robust foundation for future in-
vestigations. Addressing the identified gaps through targeted research
and methodological refinements will enhance the understanding of
DATSs’ benefits and challenges, supporting their broader adoption and
integration into sustainable livestock systems.

5. Conclusions

The purpose of this review was to delve into the impact of livestock
DATSs in terms of economic and environmental benefits, through a
thorough analysis of 52 articles. The adoption of technologies such as
AMS, Feed and Live Weight Measurement tools such as AFS, and Health
Monitoring Systems has shown to drive significant efficiencies. The
findings revealed that Europe mostly focuses its research in this field,
since 72 % of the articles analysed in this review originated from the
continent with half of them demonstrating the benefits of Health
Monitoring Systems. The analysis highlighted a strong trend towards the
increased research focus in this area, particularly between 2020 and
2022, reflecting a growing interest and need in the application of digital
tools in livestock management.

This systematic review identified a range of economic benefits across
key categories of livestock DATSs providing a detailed analysis. The
most notable ones were found in Feed and Live Weight Measurement
tools which showed the capacity to reduce energy consumption up to 97
%, alongside high accuracy in feeding time predictions by 95.7 %. In
addition, the same tools further extended these benefits by reducing feed
waste by up to 75 % and feed usage by 33 %, thereby enhancing farm
profitability. On the other side, the analysis proved environmental
benefits, as for instance, AMS showed potential for reducing greenhouse
gas emissions, with a decrease in global warming potential up to 5.83 %,
while Feed and Live Weight Measurement tools together with Health
Monitoring Systems achieved a reduction of up to 39 % on energy
consumption. Health Monitoring Systems, also provided important
benefits especially regarding health predictions, including up to 95 % for
conditions like fever, cysts, and 97 % for Bovine Respiratory Disease.

All these benefits highlight the potential of DATSs to support sus-
tainable development goals within livestock farming, aligning with
initiatives like the European Green Deal and the Common Agricultural
Policy. Their adoption, however, still faces challenges, especially among
small-scale farmers due to economic and cultural barriers, like high
initial costs, limited technological infrastructure, and reluctance to
embrace new technologies. Effective policy support, economic in-
centives, and enhanced technological infrastructure seems to be critical
to encourage widespread adoption and maximise the benefits these
technologies can offer, ensuring that sustainable, efficient livestock
practices become accessible across diverse farming scales.

The integration of monitoring technologies in livestock systems has
proven instrumental in improving animal health, welfare, and produc-
tivity through data-driven insights. While the advancements in dairy
cattle demonstrate the sector’s leading role in adopting precision tech-
nologies such as health monitoring and milking automation, a notable
disparity exists in the application of these technologies across other
livestock categories. The dominance of dairy cattle in the adoption of
DATSs reflects its economic significance and relatively higher techno-
logical integration, but it also highlights the underrepresentation of
other species. Dairy cattle studies predominantly focused on dairy cows,
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with minimal attention given to other species under the dairy category,
such as buffaloes, despite the economic and cultural significance of
buffalo farming in many regions and the growing body of research
emphasising the applicability of DATSs in buffalo farming [16,17,55,56,
86].

In addition, pigs, beef cattle, and small ruminants, despite their
substantial contributions to global livestock production, face unique
challenges, such as feed efficiency, health monitoring, and environ-
mental impact management, that remain underexplored. There is an
absence of poultry-focused studies in the reviewed articles, despite the
crucial role of poultry in global protein supply and its specific re-
quirements for disease control, environmental monitoring, and pro-
ductivity optimisation. This gap contrasts with ongoing advancements
in DATS adoption for poultry, as reported in studies such as Olejnik et al.
[66] and Cruz et al. [28]. Addressing these gaps through the develop-
ment of tailored precision technologies will be essential for achieving
equitable and effective adoption across all livestock systems, fostering a
more inclusive and sustainable approach to agricultural innovation.

In summary, DATSs present a compelling approach to advancing
sustainable, efficient, and productive livestock systems, reducing labour
requirements, conserving resources, and enhancing animal welfare. As
these innovative technologies will evolve, they seem to play a crucial
role in achieving EU targets under the European Green Deal and Com-
mon Agricultural Policy, which aim to create a competitive, sustainable
and resource-efficient economy. This review calls for continued adop-
tion, assessment and further development of these DATSs, recognising
their essential role in transforming livestock farming systems. As the
agricultural sector adapts to 21st-century challenges, deploying DATSs
in Livestock production will be essential for enhancing food security,
economic resilience, and environmental sustainability.
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