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A B S T R A C T

This review paper delved into the economic and environmental benefits of Digital Agricultural Technological 
Solutions (DATSs) in livestock farming systems. Synthesising data from 52 peer-reviewed papers it presents the 
outcomes of a systematic literature review on livestock farming DATSs, conducted with the use of the PRISMA 
methodology. The analysis highlighted the contribution of DATSs across three main livestock farming DATSs 
categories: Automated Milking Systems (AMS), Feed and Live Weight Measurement technologies, and Health 
Monitoring Systems. The results showed that AMS has the potential to boost cow productivity by up to 15 % 
while also reducing energy consumption by 35 %. Feed and Live Weight Measurement technologies contribute 
notably to sustainability and cost savings, with feed waste reductions of 75 % and feeding savings of 33 %. Health 
Monitoring Systems are especially effective in improving herd health and productivity through early detection of 
clinical issues, which directly enhances animal welfare and farm efficiency. Environmentally, AMS and health 
monitoring tools play a vital role in reducing greenhouse gas emissions, with AMS lowering global warming 
potential by up to 5.83 %. Overall, the findings of this review highlight the potentials of livestock DATSs towards 
economic viability and environmental sustainability, suggesting that the wider adoption could offer substantial 
benefits for the livestock farming sector. Up to now, DATSs have shown great potential in dairy cattle by 
improving milk yield, quality, and animal health, with advancements such as AMS increasing productivity and 
health monitoring systems enhancing early disease detection. In contrast, their application in sheep, goats, and 
pigs is still in its early stages, mainly limited to basic health monitoring and feeding technologies, despite the 
economic importance of these species, especially in the Mediterranean area, where most of the studies are 
conducted.

1. Introduction

As livestock production systems evolve, the adoption of digital 
agricultural technological solutions becomes increasingly vital. These 
technologies enhance efficiency, optimise resource management, and 
improve animal welfare, ensuring sustainable livestock production that 
can effectively address the challenges of a growing global population 
[32]. The need for the optimisation of livestock technologies arises from 
the increased demand for meat and dairy products [2,13,46,65,84]. As 

an essential component of the global food supply chain, livestock 
farming plays an important role in meeting this demand while also 
contributing to economic stability.

Nevertheless, traditional livestock farming and production methods 
are becoming increasingly unsustainable, as inefficiencies in production 
and rising operational costs intersect with growing concerns about 
environmental sustainability. These practices, which are often labour- 
intensive [45], pose significant challenges to scalability and efficiency, 
particularly as farmers struggle to adapt to modern demands. 
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Furthermore, the high costs of inputs and fodder place substantial 
pressure on profitability, leading to a gradual decline in traditional 
livestock husbandry [59]. This issue is further compounded by market 
fluctuations and the exploitation by middlemen, which create additional 
barriers and undermine the viability of traditional farming systems [82].

Environmental challenges are becoming increasingly severe, with 
climate change and prolonged droughts driving many pastoralists to 
abandon traditional herding practices [63]. These shifts are further 
compounded by ineffective range management, which undermines 
ecological sustainability and complicates efforts to maintain livestock 
populations while preserving natural resources [59]. The dairy sector 
also plays a significant role in environmental degradation, contributing 
to global greenhouse gas (GHG) emissions through methane from 
enteric fermentation and nitrous oxide from manure management [48]. 
Climate change is another factor that could exacerbate welfare issues, 
potentially affecting the performance and reproductive capacity of ru
minants raised on pasture and to a lesser extent those raised intensively, 
where mitigation strategies are more feasible [25]. Addressing these 
interconnected risks demands the adoption of improved management 
practices and modern technologies to mitigate climate change effects 
and ensure sustainability [20,73].

Therefore, there is an increasing adoption of technologies in live
stock production, commonly referred to as Precision Livestock Farming 
(PLF), Smart Livestock Farming, Digital Livestock Farming, or more 
broadly as Digital Agricultural Technological Solutions (DATSs), rep
resenting a diverse set of approaches aimed at enhancing efficiency, 
productivity, and sustainability in livestock operations. Livestock 
DATSs, including big data analytics, sensors, geographic information 
systems, unmanned aerial vehicles, and blockchain technologies, offer 
innovative solutions to these challenges [7,27,85]. By enabling real-time 
monitoring, automated decision-making, and precision management, 
livestock DATSs can help reduce the environmental footprint of farming 
while improving productivity and profitability [57]. In addition, they 
enable comprehensive individual monitoring throughout the supply 
chain, facilitating precise feeding, health management, and early 
detection of inefficiencies, which enhance production efficiency, 
resource management, and profitability while reducing the environ
mental footprint of livestock farming. Through the use of mathematical, 
statistical, and machine learning models, DATSs support the 
decision-making in livestock farming allowing breeders to identify 
behavioural patterns, minimise errors, and reduce losses [83]. The 
mechanisation and scaling of livestock operations further enhance pro
duction efficiency while lowering costs, making food products more 
accessible, especially for economically vulnerable populations [15]. 
Moreover, DATSs promote sustainable livestock management practices 
by enabling precise feeding, health monitoring, and timely detection of 
inefficiencies, ultimately contributing to reducing the environmental 
footprint of livestock farming while improving overall productivity and 
profitability.

Many studies, such as this by Bretas et al. [22], have highlighted the 
importance of DATSs, emphasising their impact on production effi
ciency, particularly in milk production [30]. For example, studies on 
Automatic Milking Systems (AMS) indicate that they reduce labour 
costs, enhance animal welfare, and provide more flexible working and 
leisure time for producers, thereby improving overall operational effi
ciency and competitiveness [47,70,77]. Moreover, another study by 
Banhazi et al. [8], highlighted that DATSs integration contributes to 
sustainable farming practices by minimising waste and optimising feed 
and water usage thus reducing the environmental footprint and sup
porting the global sustainability goals. Additionally, their adoption can 
lead to increased profitability through enhanced productivity and 
reduced operational costs [8]. Therefore, as DATSs become more 
accessible, they can drive economic development in rural areas by 
improving farm viability [44].

The integration of digital technologies in livestock production is 
closely aligned with global sustainability and food security goals, 

particularly under initiatives such as the European Green Deal and its 
’Farm to Fork Strategy’ [33]. Such initiatives aim to revolutionise the 
agricultural system by setting ambitious targets for reducing greenhouse 
gas emissions, improving animal welfare, and promoting sustainable 
farming practices by 2030. DATSs in livestock farming, such as precision 
monitoring, automated feeding systems, and advanced data analytics, 
have the potential to play a pivotal role towards this transformation. 
They offer a balanced approach to enhance productivity, reduce envi
ronmental impacts and support animal welfare, while improving the 
economic viability of farms. In addition, and apart from the economic 
and environmental benefits, DATSs are in alignment with the ethical 
framework of the Five Freedoms, ensuring humane treatment and 
well-being of livestock which promotes both higher productivity and 
ethical standards in livestock management [32].

Many studies, such as this by Bretas et al. [22], have highlighted the 
importance of DATSs, emphasising their impact on production effi
ciency, particularly in milk production [30]. For example, studies on 
AMS indicate that they reduce labour costs, enhance animal welfare, and 
provide more flexible working and leisure time for producers, thereby 
improving overall operational efficiency and competitiveness [47,70,
77]. Moreover, another study by Banhazi et al. [8], highlighted that 
DATSs integration contributes to sustainable farming practices by min
imising waste and optimising feed and water usage thus reducing the 
environmental footprint and supporting the global sustainability goals. 
Additionally, their adoption can lead to increased profitability through 
enhanced productivity and reduced operational costs [8]. Therefore, as 
DATSs become more accessible, they can drive economic development 
in rural areas by improving farm viability [44].

Despite significant technological advancements, the livestock sector, 
particularly in developing regions, continues to face significant barriers 
to fully integrate these solutions. This highlights a critical gap in the 
literature, emphasising the need for a thorough examination of how 
these technologies can enhance both the economic viability and envi
ronmental sustainability of livestock systems. Addressing this challenge, 
the EU-funded project QuantiFarm (QuantiFarm Project Website. URL: 
https://quantifarm.eu/) focuses on evaluating the impact of DATSs and 
actively promoting their integration to improve sustainability and 
competitiveness. As part of QuantiFarm, this review paper presents the 
outcomes of a systematic literature review on livestock DATSs, con
ducted using the PRISMA methodology, to delve deep and explore their 
key economic and environmental benefits.

2. Methodology

2.1. Categorisation of livestock DATSs

The application of DATSs is vital for addressing key challenges in 
livestock management, including animal health, welfare, productivity, 
and environmental sustainability. These technologies enable precise 
monitoring and analysis of various parameters such as milking perfor
mance, feed intake, climate conditions, and physiological indicators, 
which are crucial for optimising farm operations. For example, tech
nologies that monitor feed intake, body temperature, breathing fre
quency, and animal mobility are essential for preventing thermal stress, 
directly impacting both animal welfare and productivity. Similarly, 
early diagnosis of metabolic disorders like ketosis is facilitated by 
tracking rumination and resting times, as well as analysing blood 
markers such as free fatty acids. In cases of subclinical mastitis, which 
can severely affect milk production, DATSs allow for continuous moni
toring of body and udder temperatures, animal mobility, and relevant 
blood indicators, ensuring timely intervention.

Moreover, the reliable detection of oestrus, a key factor in repro
ductive efficiency, is made possible through the detailed recording of 
body temperature, mobility patterns, and behavioural changes, 
including vocalisation and mounting activity. During the perinatal 
period, when animals are particularly vulnerable to inflammation, 
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oxidative stress, and metabolic diseases, DATSs provide crucial insights 
by monitoring resting time and evaluating blood indicators like hapto
globin and calcium levels. Additionally, environmental performance, 
increasingly important in sustainable livestock farming, is assessed 
through the measurement of greenhouse gas emissions such as methane 
and ammonia, linking environmental health with animal management. 
Finally, technologies that optimise milking processes contribute signif
icantly to both feed efficiency and overall farm productivity, under
scoring the interconnected nature of these technological applications. 
By systematically recording and analysing these diverse parameters, 
DATSs offer a comprehensive framework for enhancing livestock man
agement, ensuring that animal welfare, health, and productivity are 
maintained at optimal levels.

In the literature, various approaches have been used to categorise 
livestock DATSs, helping to clarify their functions and applications. One 
such approach was employed by Monteiro et al. [60], who organised 
DATSs into four distinct categories: Automatic Milking Systems, Feed 
and Live Weight Measurement, Animal Monitoring, and Animal Health 
and Welfare. This categorisation provides a structured way to under
stand the diverse range of technologies available and their respective 
roles in livestock management.

For the purposes of this study, a slight modification to the catego
risation by Monteiro et al. [60] was implemented to better reflect the 
interconnectedness of certain technologies and their practical applica
tion on farms. Specifically, the categories of Animal Monitoring and 
Animal Health and Welfare have been merged into a single category. 
This decision is driven by the overlap between monitoring activities and 
health/welfare outcomes. Technologies designed for monitoring, such 
as systems for tracking animal behaviour, movement, and physiological 
parameters, are inherently linked to the health and welfare of livestock. 
The data generated by these systems are critical for the early detection of 
illness, stress, or other welfare-related issues, making them directly 
relevant to maintaining and improving animal health. Therefore, the 
categorisation of livestock DATSs guiding this study is structured as 
depicted in Table 1.

This revised categorisation reflects the practical realities of how 
these technologies are deployed on farms and aligns with the broader 
trend towards more integrated and efficient DATSs systems. By organ
ising DATSs in this manner, the study aims to provide a thorough review 
of the economic and environmental benefits associated with these 
technologies in modern livestock farming.

2.2. Search query

A systematic search procedure was developed by employing Scopus 
(www.scopus.com) and Web of Science (www.webofscience.com) for 
the selection of the research articles that were used in the analysis. The 
search queries were constructed to include key terms related to various 

aspects of DATSs, such as ``automatic milking,’’ ``precision feeding,’’ 
and ``animal health monitoring,’’ combined with terms related to eco
nomic and environmental outcomes, such as ̀ `economic benefit,’’ ``cost 
efficiency,’’ and ``greenhouse gas emissions.’’ The full list of search 
terms used in each database is provided in Table 2.

2.3. Study selection and screening process

Following the search, a total of 821 articles were initially identified. 
The articles were then subjected to a screening process to refine the 
selection. This involved removing duplicate records, excluding studies 

Table 1 
Categorisation of Livestock DATSs.

Category Description Example technologies

Automatic Milking 
Systems

Automate the milking 
process, enhancing labour 
efficiency and ensuring 
consistent and stress-free 
milking environments.

Robotic Milking Systems, 
Automated Milking 
Parlours

Feed and Live 
Weight 
Measurement

Monitor and optimise feeding 
practices and track live 
weight for improved 
productivity and profitability.

Precision Feeding Systems, 
Weighing Scales, 
Automated Feeders

Animal Health, 
Welfare, and 
Monitoring

Continuously monitor animal 
behaviour, movement, 
physiological parameters, and 
oestrus cycles to maintain 
health, welfare, and support 
breeding management.

Wearable Sensors, GPS 
Tracking, Health 
Monitoring Devices, 
Behaviour Monitoring 
Systems

Table 2 
Search engines and queries that were used for the scope of this study.

Search engine Query

Scopus (www.scopus.com) TITLE-ABS-KEY ("automati* milking" OR "robotic 
milking" OR "AMS" OR "milking robot" OR "AFS" OR 
"automati* feeding" OR "precis* feeding" OR "live weight 
measure*" OR "animal monitoring" OR "behavi* 
monitoring" OR "animal behavi*" OR "animal health" OR 
"animal welfare" OR "heat detection" OR "estrus" OR 
"oestrus" OR "collar" OR "face recognition" OR 
"automated sensor*" OR "mastitis detection" OR "mastitis 
prediction" OR "lameness detection" OR "IoT" OR "AI" OR 
"machine learning" OR "precision feeding system" OR 
"animal tracking" OR "environmental monitoring" OR 
"disease detection" OR "health tracking" OR "veterinary 
care") AND TITLE-ABS-KEY ("milk production" OR 
"milk yield" OR "labo* saving" OR "labo* efficiency" OR 
"labo* reduc*" OR "milk yield" OR "milk quality" OR 
"energy saving*" OR "reduced production cost" OR "cost 
saving*" OR "economic* benefit*" OR "efficiency 
improvement" OR "productivity enhancement" OR "feed 
optimi?ation" OR "feed efficiency" OR "feed saving" OR 
"profitability" OR "cost reduction" OR "profitability" OR 
"cost efficiency" OR "return on investment" OR "ROI" OR 
"profit" OR "environmental benefit" OR "greenhouse gas 
emission*" OR "GHG" OR "methane emission*" OR 
"carbon footprint" OR "ammonia emission*" OR "nitrogen 
excretion" OR "reduction in emission*" OR "freshwater 
eutrophication" OR "water consumption") AND TITLE- 
ABS-KEY ("PLF" OR "precision livestock" OR "smart 
livestock" OR "smart agriculture" OR "smart farming" OR 
"digital farming" OR "data-driven farming" OR "data- 
driven agriculture")

Web of Science (www. 
webofscience.com)

(TS= ("automati* milking" OR "robotic milking" OR 
"AMS" OR "milking robot" OR "AFS" OR "automati* 
feeding" OR "precis* feeding" OR "live weight measure*" 
OR "animal monitoring" OR "behavi* monitoring" OR 
"animal behavi*" OR "animal health" OR "animal 
welfare" OR "heat detection" OR "estrus" OR "oestrus" OR 
"collar" OR "face recognition" OR "automated sensor*" 
OR "mastitis detection" OR "mastitis prediction" OR 
"lameness detection" OR "IoT" OR "AI" OR "machine 
learning" OR "precision feeding system" OR "animal 
tracking" OR "environmental monitoring" OR "disease 
detection" OR "health tracking" OR "veterinary care")) 
AND (TS= ("milk production" OR "milk yield" OR "labo* 
saving" OR "labo* efficiency" OR "labo* reduc*" OR 
"milk quality" OR "energy saving*" OR "reduced 
production cost" OR "cost saving*" OR "economic* 
benefit*" OR "efficiency improvement" OR "productivity 
enhancement" OR "feed optimi?ation" OR "feed 
efficiency" OR "feed saving" OR "profitability" OR "cost 
reduction" OR "profitability" OR "cost efficiency" OR 
"return on investment" OR "ROI" OR "profit" OR 
"environmental benefit" OR "greenhouse gas emission*" 
OR "GHG" OR "methane emission*" OR "carbon 
footprint" OR "ammonia emission*" OR "nitrogen 
excretion" OR "reduction in emission*" OR "freshwater 
eutrophication" OR "water consumption")) AND (TS=
("PLF" OR "precision livestock" OR "smart livestock" OR 
"smart agriculture" OR "smart farming" OR "digital 
farming" OR "data-driven farming" OR "data-driven 
agriculture"))
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published before 2014, and limiting the selection to those published in 
English. The study followed the PRISMA 2020 methodology, an 
evidence-based approach that utilises a structured checklist encom
passing four key phases: identification, screening, eligibility, and in
clusion [67]. The study selection and screening process is illustrated in 
Fig. 1.

2.4. Data extraction and analysis

For the selected articles, data extraction focused on key elements 
relevant to the objectives of the review. This included the year of pub
lication, the category of DATSs studied, the animal type and the reported 
economic and environmental benefits (Table 3). The DATSs were cat
egorised according to the framework adapted from Monteiro et al. [60], 
with modifications as described earlier.

The extracted data were analysed to identify trends, assess the re
ported benefits of DATSs, animal types, and evaluate the consistency of 
findings across different studies. The results are presented in a manner 
that highlights the economic and environmental impacts of the livestock 
DATSs, with a focus on their practical applications in modern livestock 
farming.

3. Results & discussion

3.1. General overview of the selected articles (2014–2024)

A total of 52 articles were selected for this review, covering a range 
of DATSs applied in livestock production from 2014 to 2024. This se
lection reflects the broad range of technologies developed and studied 
for optimising livestock production systems. Research on livestock 
DATSs has significantly increased over the past decade, with the highest 
number of publications occurring between 2020 and 2022 (Fig. 2). This 
trend highlights the growing focus on applying digital solutions to 
address challenges in livestock farming, particularly in recent years.

This figure illustrates the distribution of 52 selected articles across 
three DATs categories, Automatic Milking Systems (13/52, ~25 %), 
Feed and Live Weight Measurement (17/52, ~33 %), and Animal 
Monitoring, Health, and Welfare (25/52, ~48 %), based on emerging 
animal types identified in the reviewed literature. The database search 
did not pre-define animal categories, allowing for the organic identifi
cation of trends (Fig. 3).

The results emphasise the significant focus on dairy cattle, which 
highlights the sector’s advanced integration of DATs, particularly in 
areas such as health monitoring and milking automation. This promi
nence reflects the economic importance of dairy farming and the rela
tively higher adoption of precision technologies within this industry. 
However, the limited representation of other livestock species, such as 
pigs, beef cattle, and small ruminants, signals a disparity in the devel
opment and application of DATs. For instance, while pigs and beef cattle 
play critical roles in global livestock production, their specific chal
lenges, such as health monitoring, feed efficiency, and environmental 
impact management, remain underexplored. Similarly, small ruminants, 
despite their economic and cultural significance in many regions, are 
underrepresented, especially in the context of emerging technologies 
like AMS. Moreover, the absence of poultry in the reviewed articles is 
notable, given its significant contribution to protein supply and its 
unique requirements for disease control, environmental monitoring, and 
productivity optimisation. These gaps underline the need for more in
clusive research efforts that address the distinct needs of these under
represented species. Developing precision technologies tailored to 
diverse livestock systems will ensure broader adoption and enhance the 
overall impact of DATs in promoting sustainable and efficient livestock 
production globally.

Fig. 1. PRISMA flow diagram to illustrate the steps involved in the review.

Table 3 
Types of data extracted throughout the review process.

Type of data Data recorded

Year of 
publication

2014–2024

DATS Category Automatic Milking Systems / Feed and Live Weight Measurement 
/ Animal Health, Welfare, and Monitoring

Animal Type Animal Categories (e.g. dairy cattle, small ruminants, beef cattle, 
pigs, poultry)

Benefits Economic benefits (e.g., labour reduction, feed efficiency and 
waste reduction, increased milk yield, cost savings, reduction in 
veterinary costs, profitability improvements, improved 
reproductive efficiency). 
Environmental benefits (e.g., GHG and carbon footprint 
reduction, energy efficiency and savings, lower environmental 
impact, health-related environmental benefits). 
Other benefits (e.g., animal stress reduction, heat stress 
mitigation, enhanced predictive capabilities, improved health 
monitoring).
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3.2. Automatic milking systems

The adoption of AMS represents a transformative shift in modern 
dairy farming, offering substantial benefits for improving productivity, 
efficiency, and sustainability. These systems have demonstrated signif
icant potential to enhance milk yield, quality, and overall herd man
agement while reducing labour costs and energy consumption. The 
integration of AMS is widely considered a game-changer for farm 
management, offering benefits such as enhanced milk yield, labour 
reduction, and more efficient monitoring of animal health and produc
tivity. Dairy farmers leverage these systems to optimise their operations, 
improve herd health management, and reduce operational costs. From 
the selected articles, two animal categories were identified; dairy cattle 
and small ruminants.

3.2.1. Dairy cattle
The integration of AMS in dairy cattle has demonstrated significant 

potential to improve milk production, quality, and overall farm 

management. The adoption of AMS is driven by the need to enhance 
productivity, reduce labour costs, and ensure better health monitoring 
of dairy herds. These systems contribute to optimising resource use, 
reducing operational demands, and improving profitability through 
advanced automation and data integration.

Economic analyses strongly highlight the benefits of AMS adoption. 
Gargiulo et al. [37] developed a web-based Decision Support System 
(DSS) known as the Integrated Management Model, utilising data from 
37 dairy farms. The model evaluated physical and economic perfor
mance with a prediction accuracy margin of 2 % to 14 %. By forecasting 
changes in profitability, the model provided a flexible tool for optimis
ing farm operations. Similarly, Heikkilä and Myyrä [43], using data 
from 1966 observations of Finnish dairy farms, demonstrated that 
transitioning to AMS resulted in total factor productivity growth of 3.1 
% annually, outperforming the 1.7 % growth of conventional milking 
systems.

Operational efficiency is further supported by studies such as Pez
zuolo et al. [68], which highlighted AMS’s ability to reduce labour costs, 

Fig. 2. Number of papers published by year up until analysis was completed on Oct 10, 2024.

Fig. 3. Number of Papers by each DATSs Category and Animal type up until analysis was completed on Oct 10, 2024.
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increase milking frequency, and improve milk yields. Productivity gains 
of 10–15 % and enhanced operator efficiency by 1.5–2 times were re
ported, along with improved cow health monitoring. Furthermore, AMS 
has been shown to enhance operator productivity by 1.5–2 times and 
increase cow productivity by 10–15 %, while also improving milk 
quality monitoring and cow health assessment according to Sitdikov 
et al. [76]. In another study, Priekulis et al. [71] estimated milk yield 
increases of 5–10 % and significant labour reductions through imme
diate milk quality testing. Expanding on these findings, Pezzuolo et al. 
[69] conducted an experiment on a dairy farm in Treviso, Italy, equip
ped with AMS– two Lely Astronaut A4 robots for voluntary milking, 
along with Automated Feeding Systems (AFS), and Robotic Scrapers. 
Energy consumption was reduced by at least 35 %, reflecting the effi
ciency gains of automation compared to traditional systems.

In addition to economic benefits, AMS also supports environmental 
sustainability. Bianchi et al. [14] used a Life Cycle Assessment across 
five dairy farms in Lombardy, Italy, to evaluate the environmental im
pacts of AMS. The study reported reductions in global warming potential 
by 1.20 % to 5.83 %, alongside mitigations in acidification and eutro
phication when energy use was optimised. These improvements were 
linked to increased milk production efficiency, highlighting the delicate 
trade-offs between productivity gains and energy consumption.

Beyond economic and environmental benefits, AMS offers powerful 
tools for health and welfare monitoring. Televičius et al. [79] used Lely 
Astronaut® A3 milking robots for monitoring key health indicators like 
rumination time, milk fat/protein ratio, milk yield, milk lactose con
centration, electrical conductivity, somatic cell count, and feed intake. 
The study revealed that cows with higher milk lactose concentrations 
(≥4.70 %) exhibited increased activity and a reduced risk of mastitis and 
metabolic disorders. Similarly, Bonora et al. [18] emphasised the value 
of AMS-generated data in herd segmentation and management. Benni 
et al. [12] used numerical models to assess cows’ responses to high 
Temperature-Humidity Index conditions, by integrating technologies 
like the AMS ‘Astronaut A3 Next’ system and Lely Qwes-H collars, 
highlighting AMS’s role in targeted cooling strategies. These strategies 
not only reduced heat-related losses but also improved milk quality and 
quantity, showcasing the comprehensive utility of AMS in addressing 
heat stress. AMS also plays a crucial role in predictive decision-making. 
Bovo et al. [19] developed a Random Forest model that predicted milk 
yield based on environmental conditions and AMS data, achieving a low 
prediction error of 2 %. This highlights the potential of AMS in sup
porting farm-level decision-making and planning future revenue.

Despite these advantages, the adoption of AMS faces notable chal
lenges. High upfront costs and ongoing maintenance requirements 
remain significant barriers, particularly for smallholder farms with 
limited financial and technical resources. The scalability of AMS is 
further hindered by the lack of targeted support and training pro
grammes, which are essential for ensuring equitable access. Addition
ally, while studies such as Pezzuolo et al. [69] and Bianchi et al. [14] 
provide compelling evidence of AMS’s benefits, gaps persist in under
standing its long-term sustainability across diverse farm sizes, regions, 
and production systems.

Further research should focus on addressing these limitations by 
expanding the scope of AMS integration to include advanced machine 
learning algorithms and predictive analytics. These technologies could 
enhance AMS’s functionality, enabling the simultaneous achievement of 
short-term productivity goals and long-term sustainability objectives. 
Moreover, future studies should prioritise standardising metrics to 
resolve conflicting results, such as variations in reported productivity 
gains or environmental impacts. For instance, while AMS reduces energy 
consumption in some contexts [69], the trade-offs between energy 
savings and increased automation demand further exploration.

The benefits of AMS, as demonstrated in the reviewed studies, are 
significant and multifaceted, encompassing productivity, sustainability, 
and animal welfare. However, realising its full potential requires a 
comprehensive approach that combines technological innovation, 

targeted policy support, and interdisciplinary research. Addressing the 
challenges of cost, scalability, and long-term sustainability will be 
crucial for ensuring that AMS benefits are accessible to a wider range of 
producers, thereby contributing to a more resilient and efficient agri
cultural sector.

3.2.2. Small ruminants
The adoption of AMS in small ruminants, such as sheep and goats, 

has lagged behind dairy cattle due to lower milk production levels, 
differing production systems, and unique anatomical and physiological 
characteristics. These factors necessitate specific adaptations, such as 
tailored teat cup sizes, optimised vacuum settings, and cluster removal 
strategies, to improve milking efficiency and animal welfare [31]. For 
instance, small ruminants exhibit a higher proportion of cisternal milk, 
which influences milking routines and reduces the necessity for 
pre-milking teat preparation except in herds with high mastitis risks 
[31]. Furthermore, advancements like automatic cluster removal have 
been shown to reduce overmilking, improve teat health, and enhance 
milking efficiency in small ruminants [31].

Despite these technological advances, significant gaps persist in 
understanding the long-term economic viability and broader adoption of 
AMS in small ruminant systems, particularly for small-scale or extensive 
operations. The cost of implementing AMS, combined with the unique 
anatomical challenges such as unbalanced udders and varying milk flow 
profiles, underscores the need for further optimisation and stand
ardisation of these systems [31]. Additionally, conflicting findings on 
cost-effectiveness, milk quality, and udder health in AMS-equipped 
farms highlight the need for research to resolve these discrepancies 
and adapt AMS technologies to diverse production systems.

Future efforts should prioritise developing cost-effective AMS tech
nologies tailored to the physiological traits of small ruminants and 
adaptable to extensive and smallholder farming contexts. Research 
should also focus on optimising milking parameters, such as vacuum 
levels and pulsation frequencies, to improve animal welfare and milk 
quality [31]. Addressing these gaps can pave the way for broader 
adoption of AMS, enhancing productivity, sustainability, and animal 
welfare in small ruminant farming.

3.3. Feed & live weight measurement

The adoption of Feed and Live Weight Measurement technologies has 
demonstrated significant potential in improving the efficiency and sus
tainability of livestock farming. These technologies optimize feeding 
practices, reduce waste, and enhance live weight monitoring, thereby 
contributing to both economic and environmental benefits. This section 
presents an analysis of these advancements, highlighting their impact on 
productivity, resource management, and cost savings across various 
livestock systems, including dairy cattle, beef cattle, small ruminants, 
and pigs.

3.3.1. Dairy cattle
DATSs significantly enhance feeding efficiency, energy management, 

and health monitoring in dairy cattle systems. In a study by Abeni et al. 
[1], an automated precision feeding system optimised the dietary intake 
of Italian Friesian cows by using a near-infrared analyser to monitor and 
adjust dry matter levels in corn silage. This ensured cows received a 
balanced and consistent diet, demonstrating the potential of such sys
tems to improve feeding efficiency and milk production. However, while 
promising, the broader application of such systems in varying produc
tion environments warrants further investigation to assess their scal
ability and long-term economic benefits.

Similarly, Conboy et al. [26] highlighted the role of automated milk 
feeders in identifying health issues in calves, particularly Neonatal Calf 
Diarrhoea. Reduced milk intake emerged as a reliable early indicator, 
allowing farmers to intervene promptly and reduce medical costs. 
Despite these findings, challenges remain in integrating such systems 
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into small-scale or extensive farming operations due to high initial costs 
and data management complexities. Expanding research to include 
diverse herd sizes and environmental contexts could enhance the 
accessibility and utility of automated milk feeders.

Energy efficiency is another critical area addressed by DATSs. Tan
gorra and Calcante [78] demonstrated that an AFS reduced energy 
consumption, underscoring the substantial operational benefits of 
automation. Additionally, feed waste was reduced by 75 %, leading to a 
33 % reduction in daily feeding costs. However, Wardal et al. [87] found 
that while robotic feeding systems required less direct energy than 
conventional systems, their cumulative energy consumption was 35.18 
% higher due to the production and maintenance demands of automated 
technologies. This discrepancy highlights the need to balance immediate 
operational efficiencies with the long-term sustainability of robotic 
systems. Comparative studies across farming contexts could further 
clarify these trade-offs and guide the design of more energy-efficient 
technologies.

Although DATSs offer significant advancements in feeding manage
ment, gaps in understanding remain. For instance, while technologies 
like near-infrared analysers and automated milk feeders show potential 
in optimising feed efficiency and early disease detection, the long-term 
impacts on animal health, welfare, and overall productivity require 
further study. Additionally, the economic viability of these systems in 
smallholder and resource-constrained settings remains uncertain. Future 
research should focus on developing cost-effective, adaptable technol
ogies that cater to diverse farming systems while addressing the envi
ronmental and economic challenges associated with their adoption.

3.3.2. Beef cattle
Beef cattle farming prioritises growth efficiency, animal welfare, and 

environmental sustainability. The integration of livestock DATSs has 
significantly advanced feed conversion, weight management, and herd 
monitoring. By leveraging technology, the industry can optimise 
resource use and improve productivity while addressing sustainability 
goals.

One notable development is the body weight prediction model pro
posed by Biase et al. [15]. This model integrates meteorological data 
such as temperature, precipitation, humidity, and wind speed with dry 
matter intake, demonstrating moderate-to-high accuracy in predicting 
body weight. Compared to traditional models like Autoregressive Inte
grated Moving Average and Seasonal Autoregressive Integrated Moving 
Average, the deterministic model provides superior support for 
decision-making processes in feed efficiency and supply chain optimi
sation. However, its adoption may require further refinement to account 
for region-specific climatic variability and operational differences in 
beef farming systems. This highlights a gap in assessing its applicability 
across diverse production systems.

In a complementary approach, Garcia et al. [36] explored machine 
learning techniques to detect weight anomalies during the fattening 
process. Their study, using Decision Trees, Random Forests, Gradient 
Boosting, and K-Nearest Neighbours, identified Decision Trees as the 
most accurate model with a mean absolute error of 5.4 kg. By con
structing ideal weight intervals through a forest isolation algorithm, the 
framework enabled early detection of anomalous weight changes, 
improving paddock management and identifying underperforming ani
mals. Despite its promise, further validation is required in large-scale 
commercial systems to ensure its robustness and scalability.

Bartels et al. [9] proposed an AI-based device using Recurrent Neural 
Networks and TinyCowNet to monitor cow behaviour with 95.7 % ac
curacy. The system, tested on six Japanese Black beef cows (Kuroge 
Washu), utilised cameras and neck-attached accelerometers to track 
feeding times and grass intake. While the results underscore the po
tential of such systems in refining feeding schedules and enhancing ef
ficiency, the limited sample size and focus on a single breed highlight the 
need for broader trials across varied production environments.

While these studies showcase the potential of DATSs to enhance 

feeding efficiency, weight management, and behavioural monitoring in 
beef cattle, certain limitations and gaps remain. The economic feasibility 
of these technologies for smallholder farms and extensive systems re
quires further exploration, as does their adaptability to diverse envi
ronmental and operational conditions. Additionally, conflicting results 
regarding the scalability and accuracy of machine learning models 
suggest a need for standardised evaluation metrics and cross-context 
validation.

Future research should prioritise developing cost-effective, scalable 
systems tailored to the needs of diverse farming operations. This in
cludes incorporating real-time data analysis, improving user-friendly 
interfaces, and integrating multi-species applications. Such advance
ments will enable broader adoption, bridging the gap between research 
innovations and practical implementation, ultimately supporting both 
academic understanding and commercial viability.

3.3.3. Small ruminants
The integration of DATSs in small ruminant production has demon

strated potential benefits in terms of labour efficiency, animal welfare, 
and sustainability, although challenges and gaps remain in optimising 
their use across diverse systems. Morgan-Davies et al. [61] conducted a 
three-year study on an extensive mountain farm with 900 ewes, 
comparing conventional management with a DATSs-enabled approach 
using electronic identification technology. While lambs in the DATSs 
group exhibited slightly lower final weights than the conventional 
group, the difference was not significant. Importantly, the DATSs 
approach resulted in a 36 % cumulative reduction in labour, with 19 % 
less time required per ewe-lamb pair and annual savings of £3 per ewe. 
This study underscores the potential of electronic identification systems 
to enhance labour efficiency without compromising flock health, 
although the slightly reduced lamb weights suggest that further opti
misation of feeding or management protocols may be needed.

Toro-Mujica et al. [81] examined strategies to reduce emissions per 
kilogram of live or carcass weight by improving animal efficiency 
through performance recording and artificial insemination. While initial 
findings indicated a higher carbon footprint for DATSs compared to 
traditional methods, the integration of artificial insemination with 
performance recording significantly improved carbon efficiency. This 
study highlights the trade-offs inherent in adopting advanced technol
ogies, emphasising the need for comprehensive evaluations of their 
environmental impacts under varying production conditions.

Behavioural monitoring is another critical application of DATSs, as 
changes in feeding and rumination patterns can indicate health issues. 
Thorup et al. [80] highlighted the value of monitoring instruments for 
analysing factors affecting animal health and welfare, providing 
actionable insights for decision-making. However, while such tools 
improve management efficiency, challenges remain in ensuring afford
ability and accessibility for smaller producers. Addressing these barriers 
is essential to maximise the adoption of behavioural monitoring systems 
across the industry.

Weight management remains a cornerstone of profitability in meat 
production, as highlighted by Brown et al. [21], who demonstrated that 
consistent weight management across all growth stages positively affects 
animal development and economic outcomes. This underscores the 
critical role of accurate and efficient weight monitoring tools in max
imising returns in small ruminant systems. Samperio et al. [74] proposed 
a novel 3D imaging system for weighing lambs, offering significant 
welfare benefits by reducing stress during weighing. With an 86 % ac
curacy rate and a mean absolute error of 1.15–1.37 kg, the system 
demonstrated real-time capabilities and cost-effectiveness, priced at 
approximately €200 per camera. The study monitored 272 Rasa Ara
gonesa lambs, with weights ranging from 13.5 to 27.7 kg. This tech
nology has the potential to streamline weight monitoring processes and 
improve management efficiency. However, the study primarily evalu
ated the system in controlled conditions, leaving questions about its 
performance in diverse farm environments. Future work should assess 
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its scalability and compatibility with extensive systems.
The studies reviewed illustrate the promising applications of DATSs 

in small ruminant farming, particularly for labour efficiency, carbon 
efficiency, and animal welfare. While technologies like electronic 
identification technology and 3D imaging systems have shown potential, 
challenges such as scalability, cost-effectiveness, and adaptation to 
varied production contexts must be addressed to realise their full ben
efits. Additionally, results regarding carbon efficiency and lamb weight 
outcomes highlight the need for standardised methodologies to evaluate 
these technologies across diverse systems. Future research should pri
oritise developing affordable, adaptable DATSs that cater to the specific 
needs of small ruminant producers, particularly in resource-constrained 
settings.

3.3.4. Pigs
The reviewed studies highlight the transformative potential of DATSs 

in pig farming, particularly for improving feed efficiency, monitoring 
growth, and enhancing productivity. The importance of feeding 
behaviour monitoring is underscored by Garrido-Izard et al. [38], who 
employed electronic feeding stations to analyse feed intake patterns 
during the fattening period of 30 Landrace pigs. While individual feed 
intake behaviours varied, the study found that weight gain, total feed 
intake, and efficiency were consistent across the group. Significant 
correlations between variations in feed intake rates and efficiency 
indicate the potential for tailored feeding strategies to enhance livestock 
management. However, the study highlights a gap in understanding the 
long-term impacts of such interventions on productivity and welfare, 
suggesting future research should explore the scalability and applica
bility of these technologies in larger and more diverse settings.

Fernández et al. [35] conducted three experiments involving 240 
growing-finishing pigs to evaluate responses to changes in feeding 
strategies. Utilising a dynamic linear regression model, the study pre
dicted individual pig weights with mean relative prediction errors of 1.0 
% for one-day and 3.3 % for seven-day forecasts. The findings demon
strate the potential of precision feeding systems to optimise growth 
performance and feed utilisation while enabling real-time monitoring of 
feed efficiency. Precision feeding strategies, such as those evaluated by 
Remus et al. [72], offer a promising approach to optimising nutrient 
utilisation. Using the Individual Precision Feeding model developed by 
Hauschild et al. [42], the study tailored diets for 95 growing pigs based 
on their daily lysine and threonine requirements [72]. By aligning 
nutrient intake with the minimal requirements for sustaining growth 
performance, the approach improved nutrient efficiency while reducing 
feed costs.

In addition to these studies on precision feeding, Gauthier et al. [39] 
evaluated algorithms for predicting litter weight from lactating sows, 
demonstrating that an ensemble algorithm achieved a mean absolute 
percentage error of 9.01 %, closely followed by linear regression at 9.30 
%. These findings highlight the utility of predictive algorithms in 
improving productivity by accurately estimating litter weight at wean
ing, a key phenotype closely related to milk production. Despite prom
ising results, the study emphasises the need for further refinement of 
prediction models to account for farm-specific variables and improve 
accuracy across diverse systems.

While technologies like predictive algorithms, electronic feeding 
stations, and precision feeding strategies have shown promise, several 
challenges persist. These include ensuring scalability, adapting systems 
to diverse farm environments, and addressing the socio-economic bar
riers to adoption, particularly for small-scale producers.

Conflicting findings, such as the consistent weight gain in Garrido- 
Izard et al. [38] versus the individual variability in Remus et al. [72], 
underline the need for standardised methodologies to evaluate livestock 
DATSs across different contexts. Moreover, the potential trade-offs be
tween efficiency gains and animal welfare must be carefully examined to 
ensure ethical and sustainable production practices. Future research 
should prioritise the development of adaptable, cost-effective solutions 

that cater to the diverse needs of pig producers.

3.4. Animal monitoring, health & welfare

The role of DATSs is increasingly critical for improving animal 
health, welfare, and productivity. These technologies enable real-time 
monitoring of animal behaviours and physiological conditions, facili
tating the early detection of diseases and enhancing overall herd man
agement. Monitoring serves not only as a tool for observation but also as 
a vital process for initiating data collection, which can be utilised in 
Artificial Intelligence (AI) and Machine Learning (ML) models to enable 
proactive interventions and informed decision-making. This section 
explores the benefits and applications of these technologies across 
various livestock systems, including dairy cattle, small ruminants, and 
pigs. The animal types discussed emerged organically from the selected 
studies, reflecting their relevance to the reviewed research, rather than 
being predefined categories.

3.4.1. Dairy cattle
Effective animal monitoring is indispensable in dairy cattle farming, 

as it directly influences milk production, reproductive performance, and 
overall farm profitability. Moreover, it helps address critical challenges 
such as disease prevention, heat stress, and environmental sustainabil
ity. The integration of DATSs provides real-time insights into cattle 
health and behaviour, enabling informed herd management decisions 
and proactive interventions.

For instance, the AFICollar® sensor system evaluated by Leso et al. 
[49] demonstrated the capability to track feeding and rumination be
haviours accurately, aligning with visual observations. Such systems 
empower farmers to make timely adjustments to herd management 
practices, thereby enhancing overall productivity and health. Similarly, 
Mihai et al. [58] investigated the relationships among Body Condition 
Score, lying behaviour, and milk production, showing that variations in 
lying patterns could significantly influence milk yield efficiency. Despite 
these advancements, the accessibility of such technologies for 
small-scale farms remains a concern, necessitating scalable solutions.

The implementation of early disease detection systems leveraging 
DATSs enables timely interventions that prevent the escalation of health 
issues, thereby mitigating productivity losses [88]. For instance, the 
LiveCare system, an IoT-based framework utilising a cow disease pre
diction algorithm, has demonstrated impressive accuracy in diagnosing 
a range of conditions in dairy cows. This system, as presented by 
Chatterjee et al. [24], predicts diseases such as fever (detection proba
bility above 95 %), cysts (90 %), mastitis (95 %), pneumonia (85 %), 
black quarter (83 %), and foot-and-mouth disease (72 %) by monitoring 
cow behavioural changes. Its cloud-based infrastructure allows farmers 
to track individual cow health in real time, supporting effective herd 
management and timely treatment. Despite its effectiveness, integrating 
LiveCare with other decision-support tools and expanding its application 
to diverse farming contexts could enhance its utility. In disease predic
tion, ML models have shown significant promise. Fadul-Pacheco et al. 
[34] employed multiple classification methods, including a random 
forest algorithm, achieving 85 % sensitivity and 62 % specificity for 
predicting clinical mastitis. Building on this, Casella et al. [23] devel
oped a cost-sensitive ML framework that integrated a Cost Optimisation 
Worth feature selection method. This framework achieved a remarkable 
97 % accuracy in detecting Bovine Respiratory Disease up to five days 
before clinical diagnosis. By analysing data on activity, feeding behav
iours, barn temperature, and manual health examinations, the study 
demonstrated the dual benefits of reducing data collection costs and 
maintaining high detection accuracy. While these tools are highly 
effective, standardising data collection processes across farms is crucial 
for broader adoption and improved predictive capabilities. Portable 
motion sensors, as used by Haladjian et al. [41], enable the early 
detection of lameness with a 91.1 % accuracy by comparing deviations 
from baseline gait models. This highlights their role in reducing 
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productivity losses associated with mobility issues. Rumination moni
toring, emphasised by Gusterer et al. [40], offers another dimension to 
early disease detection. Their study showed that rumination activity 
changes could predict diseases up to five days before clinical diagnosis, 
providing farmers with a valuable early warning system. However, 
standardised metrics for rumination monitoring across diverse farm 
setups are needed to ensure broader applicability.

Beyond disease detection, DATSs play a pivotal role in enhancing 
milk production through advanced monitoring and predictive analytics. 
Nguyen et al. [64] utilised machine learning algorithms, including 
Support Vector Machine Regression, Artificial Neural Networks (ANN), 
and Random Forest, alongside a multiple linear regression model, to 
analyse data from 36 Holstein–Friesian cows. By employing autore
gressive models that used past data, the study improved the accuracy of 
milk production predictions. The findings revealed that higher milk 
yields (up to 20 kg/day) were associated with decreases in fat and 
protein content, offering actionable insights into nutritional manage
ment strategies. However, further exploration of these trade-offs is 
essential to balance productivity and milk quality. Similarly, Mota et al. 
[62] employed Near-Infrared Spectroscopy and ANN to monitor milk 
coagulation traits in real time, studying 499 Holstein cows. This 
approach optimised milk quality and cheese-making potential, 
providing an innovative tool for value-added dairy production. Further 
extending the utility of DATSs, Antanaitis et al. [3] examined milk 
lactose concentrations as indicators of health and productivity in Hol
stein cows. Their findings revealed that higher lactose levels were 
associated with a 16.14 % increase in milk yield but a 5.05 % reduction 
in milk protein concentration. These results suggest that milk compo
sition monitoring could play a pivotal role in precision livestock 
farming, though additional studies across varying herd conditions are 
essential to confirm these findings. These advancements underscore the 
critical role of data-driven approaches in supporting farmers to plan for 
future revenue while ensuring product quality.

Heat stress significantly impacts dairy cattle productivity, under
scoring the importance of advanced monitoring and management 
technologies. AI-based solutions have emerged as effective tools for 
detecting and mitigating heat stress. Ma et al. [54] developed an AI 
model capable of estimating deep-body temperature in cattle, enabling 
real-time health anomaly detection. Similarly, Levit et al. [50] tested a 
dynamic cooling system incorporating in vivo temperature sensors, 
resulting in a 61.1 % reduction in heat stress duration. This intervention 
notably increased milk fat, protein, and energy-corrected milk yields. In 
another approach, Shu et al. [75] used machine learning models, 
particularly ANN, to predict physiological responses such as respiration 
rate and vaginal temperature under heat stress. ANN demonstrated su
perior predictive accuracy, allowing farms to optimise cooling strategies 
like sprinklers, reducing operational costs by minimising water and 
energy use. Barn renovation, including fans and sprinklers, was also 
identified as an effective heat stress mitigation strategy, leading to a 20 
% increase in milk yield during summer months [52]. Collectively, these 
findings highlight the importance of precision cooling strategies for 
improving animal welfare and profitability, though further research into 
cost-effective implementation is warranted.

In addition to addressing heat stress, monitoring technologies have 
revolutionised reproductive management, a critical factor in maintain
ing herd productivity and profitability. Oestrus detection technologies 
are central to improving breeding efficiency and reducing reproductive 
losses. Arago et al. [5] developed an IoT system for non-invasive oestrus 
detection, combining pan-tilt-zoom cameras and a web application to 
monitor standing-heat behaviours. Despite a moderate detection effi
ciency of 50 %, this system offers potential for minimising management 
workloads. Lin et al. [51] used neck-mounted activity monitoring tags 
and Transformer neural networks to detect pregnancy losses in 185 
dairy cows with an 87 % accuracy. This model provides accurate, 
interpretable predictions, enabling farmers to prevent economic losses 
through timely interventions. Lovarelli et al. [53] further evaluated 

pedometer-based oestrus detection, demonstrating improved farm 
management by reducing reliance on manual observation and 
enhancing resource allocation. Advanced technologies like augmented 
reality combined with deep learning offer innovative solutions for oes
trus detection and cow identification. Arıkan et al. [6] introduced a 
system leveraging YOLOv5 models to detect mounting behaviour with 
99 % accuracy, integrating augmented reality for enhanced reproduc
tive management. This approach reduces costs, prevents delayed calf 
births, and supports timely insemination, though scaling these tech
nologies for smallholder systems remains a challenge. Silent oestrus, a 
significant issue in buffalo farming, has also been addressed through 
innovative solutions. Devi et al. [29] developed a DSS based on buffalo 
vocalisations, achieving a 95 % accuracy in distinguishing oestrus from 
non-oestrus phases. This system offers a cost-effective, automated 
alternative to labour-intensive methods, demonstrating the potential of 
integrating vocalisation-based algorithms into broader livestock man
agement frameworks.

Environmental benefits of monitoring technologies are equally 
noteworthy. Improved udder health monitoring can lower greenhouse 
gas emissions by 0.04–0.06 % per 5 % increase in infected cow detection 
[14]. Lovarelli et al. [53] highlighted that integrating DATSs into dairy 
management practices, such as increasing pasture access during dry 
periods, reduced carbon footprints by 6–9 %. These findings underscore 
the dual benefits of monitoring technologies in enhancing sustainability 
and operational efficiency. McNicol et al. [57] explored the environ
mental benefits of livestock DATSs, focusing on technologies such as 
automatic weight platforms, fertility sensors, and health sensors. Their 
results showed a reduction in GHG emissions of up to 12 % in housed 
systems, with notable improvements in production efficiency. While 
these findings demonstrate the environmental potential of DATSs, the 
high initial costs and technical complexity of these systems often limit 
adoption, particularly among smallholder farmers.

Advanced monitoring technologies have revolutionised animal 
health, productivity, and sustainability in livestock farming, offering 
precise tools such as IoT-based systems, wearable sensors, and machine 
learning models for early disease detection and efficient herd manage
ment. These technologies have demonstrated clear benefits, including 
enhanced productivity, reduced greenhouse gas emissions, and 
improved resource utilisation. However, their adoption remains limited, 
particularly among smallholder farms, due to high costs and technical 
complexity. Addressing these barriers through the development of cost- 
effective, scalable solutions is essential to ensure broader accessibility. 
Furthermore, integrating monitoring systems with predictive analytics 
and decision-support tools can provide holistic insights, enabling farms 
to optimise health management and environmental practices. By 
fostering innovation and accessibility, monitoring technologies can 
transform livestock farming into a more sustainable and resilient sector.

3.4.2. Small ruminants
Monitoring technologies have increasingly demonstrated their ca

pacity to transform the management of small ruminants, particularly in 
dairy goat farming. Belanche et al. [11] evaluated the Eskardillo tool on 
12 Murciano-Granadina dairy goat farms, comparing them to 12 control 
farms over several years. The use of Eskardillo resulted in significant 
gains, including a 14–17 % increase in milk yield per lactation. These 
improvements were attributed to enhanced culling strategies and ge
netic progress achieved through precise selection of high-merit goats. 
Additionally, the tool effectively reduced seasonality in milk production, 
leading to a 17 % increase in off-season milk output. These findings 
emphasise the tool’s potential to optimise productivity while supporting 
sustainable intensification in dairy goat farming.

Reproductive management also benefited significantly from the 
Eskardillo tool. Goats on Eskardillo-managed farms demonstrated 
shorter unproductive periods, with reductions in the age at first partum 
(− 30 days) and dry periods (− 20 days). Furthermore, dry periods were 
standardised to approximately two months, supporting consistent and 
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optimised lactation cycles. These enhancements were achieved by 
leveraging precise monitoring of physiological status and reproductive 
cycles, enabling informed and timely breeding decisions. Expanding on 
the success of Eskardillo, Belanche et al. [10] introduced the RUMIA 
platform, which incorporated real-time feedback on milk yield, 
composition, health status, and reproductive performance. This plat
form advanced farm management by enabling customised lactation 
lengths, accelerating genetic progress, and further refining culling 
strategies. By reducing unproductive periods and mitigating production 
seasonality, RUMIA facilitated the adoption of more sustainable and 
economically viable practices in dairy goat farms.

While these tools underline the transformative potential of data- 
driven platforms in small ruminant management, gaps and challenges 
remain. The current research primarily focuses on Murciano–Granadina 
goats and intensively managed farms, leaving questions about applica
bility to other breeds, production systems, and regions unanswered. The 
effectiveness of these platforms in extensive or mixed farming systems 
remains unclear and warrants further exploration. Additionally, inte
grating advanced machine learning algorithms could enhance predictive 
health monitoring, improve welfare outcomes, and strengthen envi
ronmental sustainability through precision farming practices. The 
Eskardillo and RUMIA platforms highlight the importance of tailored 
monitoring technologies in driving productivity, sustainability, and 
welfare in small ruminant farming. However, future research should 
prioritise their scalability and adaptability across diverse farming con
texts. This would enable broader adoption, ultimately benefiting both 
the academic and commercial communities while supporting the global 
push for sustainable livestock management practices.

3.4.3. Pigs
Monitoring technologies are increasingly pivotal in improving pig 

welfare and production efficiency, as evidenced by studies integrating 
novel tools and predictive models into pig farming. Garrido-Izard et al. 
[38] demonstrated the effectiveness of surface temperature recorders 
and electronic feeding stations in monitoring physiological responses 
during the fattening period. Their study showed that pigs with higher 
average surface temperatures exhibited lower variations in recorded 
temperatures, suggesting a potential link between thermal stability and 
overall health status. By combining temperature data with feeding 
behaviour, the research underscored the value of monitoring technolo
gies in enhancing welfare through a deeper understanding of pigs’ 
physiological conditions.

Aparna et al. [4] extended this approach to improve reproductive 
management, focusing on the use of precision livestock farming tools to 
predict the onset of farrowing in loose-housed sows. The researchers 
developed a Hidden Phase-type Markov Model (HPMM) that utilised 
sensor data, including water consumption and activity levels, to provide 
early warnings of farrowing with an average lead time of 11.5 h. This 
predictive system enabled better supervision and optimised resource 
allocation, significantly reducing piglet mortality by facilitating timely 
intervention. Furthermore, the system minimised energy waste by 
activating heating systems only when needed, showcasing a practical, 
cost-effective solution for improving management efficiency.

While these tools highlight the potential for advancing welfare and 
productivity, they also reveal gaps that merit further research. For 
instance, the link between thermal stability and health status identified 
by Garrido-Izard et al. [38] necessitates deeper exploration to under
stand its implications for broader health management strategies. Simi
larly, the generalisability of predictive farrowing systems like HPMM to 
other housing systems or pig breeds remains uncertain, emphasising the 
need for further validation across diverse contexts.

Moreover, the integration of multi-sensor technologies, as seen in 
Aparna et al. [4], could be expanded to include additional behavioural 
and physiological metrics, potentially enhancing predictive accuracy 
and enabling more holistic management approaches. Future research 
should also address the scalability of such systems, ensuring their 

accessibility for smallholder farms and commercial-scale operations 
alike.

The findings from these studies demonstrate the transformative po
tential of monitoring technologies in pig farming. By bridging the gap 
between research and practice, these tools not only improve welfare and 
productivity but also align with broader goals of sustainability and 
resource efficiency. However, a more comprehensive exploration of 
their long-term impacts and adaptability is essential to maximise their 
contribution to the academic and commercial communities.

4. Limitations & future research

The present review provides a comprehensive analysis of the eco
nomic and environmental benefits of DATSs in livestock farming, syn
thesising findings from 52 peer-reviewed studies. While the systematic 
approach and structured categorisation of DATSs offer valuable insights, 
several limitations in our methodology and scope should be acknowl
edged, which could serve as focal points for future research. One of the 
primary limitations of our study lies in the specificity of the search 
queries used during the literature review process. By focusing predom
inantly on general terms related to DATSs and their economic and 
environmental impacts, our search queries may not have captured 
studies focusing specifically on certain livestock species, such as poultry 
or other less commonly studied categories, including small ruminants 
like sheep and goats, or dual-purpose breeds. Consequently, the sys
tematic search may have unintentionally excluded relevant studies that 
could provide a more nuanced understanding of the benefits and limi
tations of DATSs for these species. While our categorisation framework 
enabled the analysis of broad trends, the lack of animal-specific search 
terms may have limited the exploration of technology applications 
tailored to specific species or production systems. Another limitation 
stems from the time frame and language restrictions applied during the 
screening process. The decision to include only studies published be
tween 2014 and 2024 and to restrict the review to English-language 
publications, though methodologically sound, could have resulted in 
the omission of earlier or non-English studies that might offer valuable 
insights into the historical development or region-specific applications 
of DATSs. This limitation is particularly relevant for understanding the 
adoption and adaptation of these technologies in diverse cultural and 
economic contexts.

The selected studies also disproportionately focus on certain live
stock species and production systems, with dairy cattle dominating. This 
reflects the relatively advanced state of DATSs adoption in the dairy 
sector but inadvertently limits the generalisability of the findings to 
other livestock systems. Small ruminants, pigs, and other species are 
underrepresented, which may obscure unique challenges and opportu
nities associated with implementing DATSs in these systems. Similarly, 
intensive and semi-intensive systems receive more attention than 
extensive or mixed systems, leaving gaps in understanding the scal
ability and applicability of these technologies in less controlled envi
ronments. Furthermore, the review did not extensively explore the 
socio-economic barriers to DATSs adoption, particularly in small
holder or resource-constrained settings. Although the results underscore 
the potential of DATSs to improve productivity and sustainability, high 
initial costs, maintenance demands, and technical complexity remain 
significant challenges for widespread adoption. Addressing these bar
riers would require a deeper investigation into policy frameworks, 
financial incentives, and capacity-building initiatives, aspects that fall 
beyond the scope of this review.

Another gap lies in the limited consideration of the integration of 
DATSs with other technological advancements, such as blockchain for 
traceability, advanced genetic tools, or renewable energy systems. While 
the reviewed studies emphasise the standalone benefits of DATSs, their 
potential synergy with complementary technologies represents an area 
ripe for exploration. Similarly, the long-term sustainability and lifecycle 
impacts of these technologies, including their end-of-life disposal and 
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energy dependencies, were not comprehensively examined in the 
existing literature or our synthesis.

Finally, the dynamic and rapidly evolving nature of DATSs poses an 
inherent limitation to any review. As technological advancements and 
innovations continue to emerge, the findings of this study may require 
regular updates to remain relevant. Future research should adopt 
adaptive methodologies to track and incorporate the latest de
velopments in DATSs, ensuring that the evolving landscape of digital 
agriculture is adequately represented. Despite these limitations, the 
findings of this review highlight the transformative potential of DATSs 
in livestock farming and provide a robust foundation for future in
vestigations. Addressing the identified gaps through targeted research 
and methodological refinements will enhance the understanding of 
DATSs’ benefits and challenges, supporting their broader adoption and 
integration into sustainable livestock systems.

5. Conclusions

The purpose of this review was to delve into the impact of livestock 
DATSs in terms of economic and environmental benefits, through a 
thorough analysis of 52 articles. The adoption of technologies such as 
AMS, Feed and Live Weight Measurement tools such as AFS, and Health 
Monitoring Systems has shown to drive significant efficiencies. The 
findings revealed that Europe mostly focuses its research in this field, 
since 72 % of the articles analysed in this review originated from the 
continent with half of them demonstrating the benefits of Health 
Monitoring Systems. The analysis highlighted a strong trend towards the 
increased research focus in this area, particularly between 2020 and 
2022, reflecting a growing interest and need in the application of digital 
tools in livestock management.

This systematic review identified a range of economic benefits across 
key categories of livestock DATSs providing a detailed analysis. The 
most notable ones were found in Feed and Live Weight Measurement 
tools which showed the capacity to reduce energy consumption up to 97 
%, alongside high accuracy in feeding time predictions by 95.7 %. In 
addition, the same tools further extended these benefits by reducing feed 
waste by up to 75 % and feed usage by 33 %, thereby enhancing farm 
profitability. On the other side, the analysis proved environmental 
benefits, as for instance, AMS showed potential for reducing greenhouse 
gas emissions, with a decrease in global warming potential up to 5.83 %, 
while Feed and Live Weight Measurement tools together with Health 
Monitoring Systems achieved a reduction of up to 39 % on energy 
consumption. Health Monitoring Systems, also provided important 
benefits especially regarding health predictions, including up to 95 % for 
conditions like fever, cysts, and 97 % for Bovine Respiratory Disease.

All these benefits highlight the potential of DATSs to support sus
tainable development goals within livestock farming, aligning with 
initiatives like the European Green Deal and the Common Agricultural 
Policy. Their adoption, however, still faces challenges, especially among 
small-scale farmers due to economic and cultural barriers, like high 
initial costs, limited technological infrastructure, and reluctance to 
embrace new technologies. Effective policy support, economic in
centives, and enhanced technological infrastructure seems to be critical 
to encourage widespread adoption and maximise the benefits these 
technologies can offer, ensuring that sustainable, efficient livestock 
practices become accessible across diverse farming scales.

The integration of monitoring technologies in livestock systems has 
proven instrumental in improving animal health, welfare, and produc
tivity through data-driven insights. While the advancements in dairy 
cattle demonstrate the sector’s leading role in adopting precision tech
nologies such as health monitoring and milking automation, a notable 
disparity exists in the application of these technologies across other 
livestock categories. The dominance of dairy cattle in the adoption of 
DATSs reflects its economic significance and relatively higher techno
logical integration, but it also highlights the underrepresentation of 
other species. Dairy cattle studies predominantly focused on dairy cows, 

with minimal attention given to other species under the dairy category, 
such as buffaloes, despite the economic and cultural significance of 
buffalo farming in many regions and the growing body of research 
emphasising the applicability of DATSs in buffalo farming [16,17,55,56,
86].

In addition, pigs, beef cattle, and small ruminants, despite their 
substantial contributions to global livestock production, face unique 
challenges, such as feed efficiency, health monitoring, and environ
mental impact management, that remain underexplored. There is an 
absence of poultry-focused studies in the reviewed articles, despite the 
crucial role of poultry in global protein supply and its specific re
quirements for disease control, environmental monitoring, and pro
ductivity optimisation. This gap contrasts with ongoing advancements 
in DATS adoption for poultry, as reported in studies such as Olejnik et al. 
[66] and Cruz et al. [28]. Addressing these gaps through the develop
ment of tailored precision technologies will be essential for achieving 
equitable and effective adoption across all livestock systems, fostering a 
more inclusive and sustainable approach to agricultural innovation.

In summary, DATSs present a compelling approach to advancing 
sustainable, efficient, and productive livestock systems, reducing labour 
requirements, conserving resources, and enhancing animal welfare. As 
these innovative technologies will evolve, they seem to play a crucial 
role in achieving EU targets under the European Green Deal and Com
mon Agricultural Policy, which aim to create a competitive, sustainable 
and resource-efficient economy. This review calls for continued adop
tion, assessment and further development of these DATSs, recognising 
their essential role in transforming livestock farming systems. As the 
agricultural sector adapts to 21st-century challenges, deploying DATSs 
in Livestock production will be essential for enhancing food security, 
economic resilience, and environmental sustainability.
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[79] M. Televičius, V. Juozaitiene, D. Malašauskienė, R. Antanaitis, A. Rutkauskas, 
M. Urbutis, W. Baumgartner, Inline milk lactose concentration as biomarker of the 
health status and reproductive success in dairy cows, Agriculture 11 (1) (2021) 38, 
https://doi.org/10.3390/agriculture11010038.

[80] V.M. Thorup, B.L. Nielsen, P. Robert, S. Giger-Reverdin, J. Konka, C. Michie, N. 
C. Friggens, Lameness affects cow feeding but not rumination behavior as 
characterized from sensor data, Front. Vet. Sci. 3 (2016), https://doi.org/10.3389/ 
fvets.2016.00037.

[81] P. Toro-Mujica, C. Aguilar, R.R. Vera, F. Bas, Carbon footprint of sheep production 
systems in semi-arid zone of Chile: a simulation-based approach of productive 
scenarios and precipitation patterns, Agric. Syst. 157 (2017) 22–38, https://doi. 
org/10.1016/j.agsy.2017.06.012.

[82] P.K. Tripathi, C.K. Singh, S. Patel, R. Singh, A.K. Deshmukh, Designing demand 
driven price sensitive supply chain model for Indian farmers, Vis. J. Bus. Perspect. 
(2023), https://doi.org/10.1177/09722629231178649.

[83] E. Tullo, A. Finzi, M. Guarino, Environmental impact of livestock farming and 
precision livestock farming as a mitigation strategy, Sci. Total Environ. 650 (2019) 
2751–2760, https://doi.org/10.1016/j.scitotenv.2018.10.018.

[84] C. Tzanidakis, P. Simitzis, K. Arvanitis, P. Panagakis, An overview of the current 
trends in precision pig farming technologies, Livest. Sci. 249 (2021) 104530, 
https://doi.org/10.1016/j.livsci.2021.104530.

[85] C. Tzanidakis, O. Tzamaloukas, P. Simitzis, P. Panagakis, Precision livestock 
farming applications (PLF) for grazing animals, Agriculture 13 (2) (2023) 288, 
https://doi.org/10.3390/agriculture13020288.

[86] M.T. Verde, R. Matera, F. Bonavolonta, F. Lamonaca, L. Angrisani, C. Fezza, 
L. Borzacchiello, A. Cotticelli, G. Neglia, Comparative performance analysis 
between two different generations of an automatic milking system, Acta Imeko 12 
(4) (2023) 1–6, https://doi.org/10.21014/actaimeko.v12i4.1646.

[87] W.J. Wardal, K.E. Mazur, K. Roman, M. Roman, M. Majchrzak, Assessment of 
cumulative energy needs for chosen technologies of cattle feeding in barns with 
conventional (CFS) and automated feeding systems (AFS), Energies 14 (24) (2021) 
8584, https://doi.org/10.3390/en14248584.

[88] X. Zhou, C. Xu, H. Wang, W. Xu, Z. Zhao, M. Chen, B. Huang, The early prediction 
of common disorders in dairy cows monitored by automatic systems with machine 
learning algorithms, Animals 12 (10) (2022) 1251, https://doi.org/10.3390/ 
ani12101251.

G. Papadopoulos et al.                                                                                                                                                                                                                         Smart Agricultural Technology 10 (2025) 100783 

13 

https://doi.org/10.56556/gssr.v3i3.954
https://doi.org/10.1016/j.meatsci.2019.05.007
https://doi.org/10.1093/jas/skad206
https://doi.org/10.22004/ag.econ.24534
https://doi.org/10.22004/ag.econ.24534
https://doi.org/10.3390/atmos15080926
https://doi.org/10.3390/atmos15080926
https://doi.org/10.3390/ani11102852
https://doi.org/10.1016/j.animal.2020.100093
https://doi.org/10.1016/j.compag.2023.107638
https://doi.org/10.1016/j.compag.2023.107638
https://doi.org/10.3390/ani10040713
https://doi.org/10.3390/ani10040713
https://doi.org/10.1016/j.scitotenv.2023.163639
https://doi.org/10.1016/j.scitotenv.2023.163639
https://doi.org/10.18494/sam.2020.2913
https://doi.org/10.18494/sam.2020.2913
https://doi.org/10.3390/ani12172225
https://doi.org/10.1080/1828051x.2023.2271951
https://doi.org/10.1080/1828051x.2023.2271951
https://doi.org/10.3389/fsufs.2024.1414858
https://doi.org/10.1038/s41598-024-67933-7
https://doi.org/10.1038/s41598-024-67933-7
https://doi.org/10.3390/ani11082345
https://doi.org/10.3390/ani11082345
https://doi.org/10.1016/j.livsci.2017.12.002
https://doi.org/10.1016/j.livsci.2017.12.002
https://doi.org/10.3168/jds.2021-21426
https://doi.org/10.1007/s11442-019-1656-4
https://doi.org/10.1016/j.compag.2020.105258
https://doi.org/10.1016/j.compag.2020.105258
http://refhub.elsevier.com/S2772-3755(25)00017-6/sbref0065
http://refhub.elsevier.com/S2772-3755(25)00017-6/sbref0065
http://refhub.elsevier.com/S2772-3755(25)00017-6/sbref0065
https://doi.org/10.3390/agriculture12050718
https://doi.org/10.3390/agriculture12050718
https://doi.org/10.1371/journal.pmed.1003583
https://doi.org/10.1371/journal.pmed.1003583
https://doi.org/10.22616/erdev2017.16.n148
https://doi.org/10.22616/erdev2017.16.n148
https://doi.org/10.1007/978-3-030-39299-4_67
https://doi.org/10.1007/978-3-030-39299-4_67
https://doi.org/10.1017/s1068280500006043
https://doi.org/10.1017/s1068280500006043
https://doi.org/10.22616/erdev2018.17.n289
https://doi.org/10.22616/erdev2018.17.n289
https://doi.org/10.3390/ani11123354
https://doi.org/10.3390/ani11123354
https://doi.org/10.1016/j.agsy.2012.11.002
https://doi.org/10.1016/j.agsy.2012.11.002
https://doi.org/10.1016/j.animal.2021.100212
https://doi.org/10.1016/j.animal.2021.100212
https://doi.org/10.1016/j.compag.2023.107752
https://doi.org/10.1016/j.compag.2023.107752
https://doi.org/10.12737/2073-0462-2020-69-74
https://doi.org/10.12737/2073-0462-2020-69-74
https://doi.org/10.18174/njas.v43i3.566
https://doi.org/10.18174/njas.v43i3.566
https://doi.org/10.4081/jae.2018.869
https://doi.org/10.3390/agriculture11010038
https://doi.org/10.3389/fvets.2016.00037
https://doi.org/10.3389/fvets.2016.00037
https://doi.org/10.1016/j.agsy.2017.06.012
https://doi.org/10.1016/j.agsy.2017.06.012
https://doi.org/10.1177/09722629231178649
https://doi.org/10.1016/j.scitotenv.2018.10.018
https://doi.org/10.1016/j.livsci.2021.104530
https://doi.org/10.3390/agriculture13020288
https://doi.org/10.21014/actaimeko.v12i4.1646
https://doi.org/10.3390/en14248584
https://doi.org/10.3390/ani12101251
https://doi.org/10.3390/ani12101251

	Economic and environmental benefits of digital agricultural technological solutions in livestock farming: A review
	1 Introduction
	2 Methodology
	2.1 Categorisation of livestock DATSs
	2.2 Search query
	2.3 Study selection and screening process
	2.4 Data extraction and analysis

	3 Results & discussion
	3.1 General overview of the selected articles (2014–2024)
	3.2 Automatic milking systems
	3.2.1 Dairy cattle
	3.2.2 Small ruminants

	3.3 Feed & live weight measurement
	3.3.1 Dairy cattle
	3.3.2 Beef cattle
	3.3.3 Small ruminants
	3.3.4 Pigs

	3.4 Animal monitoring, health & welfare
	3.4.1 Dairy cattle
	3.4.2 Small ruminants
	3.4.3 Pigs


	4 Limitations & future research
	5 Conclusions
	Ethics statement
	Declaration of generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


