Assessing the impact of digital technology solutions in agriculture in **real-life** conditions

⇔QuantiFarm

30 Test Cases

100 Digital Solutions

ph

4000 Farmers

Funded by the European Union

quantifarm.eu

QuantiFarm is a **3.5 year-long** project bringing together **32** partners and real life test cases to overcome the challenges that limit DATSs adoption.

QuantiFarm will support:

- Informed decisions based on the demonstration of the costs and benefits
- Facilitated uptake of digital technologies through decision-making support
- Strengthen the capacities of farmers' advisors in the field of digital technologies

PORTUGAL

DIGITAL AGRICULTURE TECHNOLOGY SOLUTIONS (DATSs)

Range of DATSs include

- Farm management information systems
- Controlled traffic farming technologies
- Reacting and variable rate technologies
- Recording and mapping technologies
- Robotic systems and smart machines

will assess DATSs against their benefits, costs and impacts on sustainability

SPAIN

Test Cases

IRELAND

Technological means used

- Artificial Intelligence (AI)
- Internet of Things (IoT)
- Communication Networks
- Sensors
- Drones
- Robotics

30 TEST CASES **20** COUNTRIES

FINLAND

LITHUANIA

POLAND

SLOVENIA CROATIA

LATVIA

UNITED KINGDOM

NETHERLANDS

GERMANY

ITALY

FRANCE

BELGIUM

ROMANIA

SERBIA

GREECE

10 BIOGEOGRAPHICAL REGIONS

- Mediterranean
- Anatolian
- Continental
- Pannonian
- Macaronesian
- Alpine
- Boreal
- Black Sea
- Steppic
- Atlantic

7 AGRIFOOD SECTORS

- Aquaculture
- Vegetables
- Apiculture
- Fruit
- Arable
- Meat
- Dairy

Challenges for increasing DATSs uptake:

Lack of knowledge about DATSs

DATSs impact on sustainability when used under real life conditions

Insufficient clear and "hard" data on the costs and benefits of DATSs

Impediments such as farmers' cultural and behavioural attitudes

For each DATS adopting farm studied, an equivalent non-DATS using farm will also be studied.

TURKEY

Reduce inputs and costs

Main Goals of using the DATSs

Increase yields

Increase environmental sustainability

Reduce risks

THE PROJECT'S 5 KEY RESULTS

Behavioral Analysis: to understand the factors that affect farmers choices when selecting and implementing DATSs

Assessment framework: to evaluate the value of DATSs and their economic, environmental, societal sustainability

QuantiFarm Digital Innovation Academy: to train advisors so they can offer innovative advisory services on DATSs to farmers and help them make the best selection and use of DATSs

Policy Monitoring Tool: to assess the sustainability and competitiveness of DATSs and the effectiveness of policy interventions

QuantiFarm Toolkit: a customisable, evidence-based decision support tool for adopting, benchmarking, compliance checking and monitoring DATSs

